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SUMMARY 

 

Hydrogel-based biomaterials are often used for biomolecule delivery or 

encapsulation of cells for tissue engineering and regenerative medicine applications. 

However, utilizing hydrogels in dynamic cell systems can be challenging, as hydrogels 

must be engineered to account for changes in cellular behavior. For example, the 

hydrogel cell culture platforms and analyses techniques employed to investigate cell 

response to disease conditions should account for the variations in cellular 

communication resulting from changes in the external stimuli inherent to the disease. In 

addition, the hydrogels used to modulate cellular differentiation, either through protein 

delivery or direct interactions with cells, should account for the evolving cell phenotype. 

Thus, in this work, hydrogel-based technologies were developed and utilized to 

interrogate and modulate dynamic cellular behavior. 

A PEG-based platform was designed and utilized to interrogate MSCs, 

adipocytes, and osteoblasts under hyperglycemic conditions via multivariate analyses, as 

these three cell types are implicated in abnormal deposition of marrow adipose tissue and 

bone in diabetes and osteoporosis. Then, as heparin is known to bind many growth 

factors involved in cellular differentiation processes, heparin-based MPs were used to 

temporally modulate endochondral ossification of ATDC5 cells, possibly through 

heparin-mediated protein sequestration. To further modulate the timing of protein 

sequestration, heparin-PEG core-shell MPs were designed to enable sequestration and 

temporally controlled redelivery of protein. Finally, hydrolytically degradable heparin-

PEG-based MPs were engineered with tunable heparin content and degradation rate, to 
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enable temporally controlled protein release. Overall, this work demonstrates the ability 

of PEG and heparin-based hydrogels to investigate and regulate cellular processes that 

evolve in time. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

 Hydrogel-based biomaterials are often employed in regenerative medicine due to 

their high water content, biocompatibility, amenability to chemical modification, and 

potential to evolve with time [1–3]. For example, three-dimensional (3D) hydrogel in 

vitro cell culture systems have provided extensive knowledge about cell behavior that 

would have be difficult to obtain in vivo due to the inability to assess subtle, cell-level 

changes to chemical and physical stimuli in animal models [4–8]. In addition, hydrogel-

based delivery systems have enabled entrapment and controlled release of various 

biomolecules by employing protein-attractive and biodegradable materials [9–12]. 

However, a major obstacle in the utilization of biomaterials can be ensuring that they are 

engineered to permit analysis or modulation of dynamic cellular processes such as those 

observed in disease states and during differentiation, in which cell behaviors fluctuates in 

both space and time in response to various stimuli.  

As tools to enable 3D cell culture, hydrogel-based platforms have facilitated 

capturing important aspects of the in vivo microenvironment during in vitro studies [2,8]. 

For example, cellular communication is a dynamic process that is critical to normal cell 

function, and by using co-culture to permit cellular communication in vitro, better 

understandings of in vivo cell behavior have emerged [13–15]. In addition, interactions 

between cells and the ECM in which they reside are implicated in modulating dynamic 

cellular processes like differentiation, and by integrating ECM molecules, such as 

integrin-binding peptide sequences or glycosaminoglycans, into hydrogel culture 
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systems, a deeper knowledge of how these materials might affect cells in vivo or how 

they could be used as tools for tissue regeneration might be gained [9,16].  

Thus, the research presented in this thesis strives to develop hydrogel-based 

materials to enable interrogation and modulation of dynamic cellular processes. First, 

investigation of the complex interactions between multiple cell types under pathological 

conditions could provide further insight into disease progression and potential treatment. 

For example, it has been hypothesized that dysregulation of mesenchymal stem cell 

(MSC) commitment to adipogenic and osteogenic lineages could be the cause of 

increased marrow fat and elevated cases of osteoporosis in patients with diabetes mellitus 

[17–21]. As MSC lineage commitment is partially controlled by signals from mature 

adipocytes and osteoblasts, it is possible that dysregulation occurs due to altered cellular 

cross-talk in hyperglycemic conditions [22], but further studies are required to confirm 

this hypothesis. Therefore, development of in vitro biomaterials platforms that enable 

advanced analyses of cell co-culture could aid in understanding the complicated 

interactions between MSCs, adipocytes, and osteoblasts and could be applied to the study 

of other dynamic cellular behavior. However, challenges in designing materials that 

allow cell type-specific analyses, including post-culture functional assays, still must be 

overcome. 

Second, utilization of ECM-mimicking materials could enhance control over the 

dynamic process of cellular differentiation, a common goal in tissue repair and 

regeneration [3]. For example, endochondral ossification involves the conversion of 

proliferating chondrocytes into bone through a process tightly regulated by signaling 

molecules [23], and modulation of this process could lead to improved therapies for 
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growth plate or articular cartilage injuries [24]. GAGs are known to bind many of the 

growth factors involved in endochondral ossification and other differentiation processes, 

including IHH, FGFs, TGFβs, BMPs, and IGFs [25,26], and this protein-binding ability 

could enable temporal modulation of cellular differentiation. While GAGs have been 

used to deliver biomolecules in a variety of tissue-engineering applications [26], their 

ability to act as the sole modulator of differentiation by the mechanism of protein binding 

has not been fully explored. In addition, the goal of designing materials to temporally 

control GAG-mediated protein sequestration and release has not yet been fully realized. 

1.2 Research Objectives 

 Thus, the goal of this work was to develop hydrogel-based technologies to 

analyze and modulate dynamic cell processes. This was achieved by pursuing two 

parallel focus areas: 1) development of a PEG-based hydrogel co-culture platform to 

permit analysis of cellular cross-talk in pathological conditions and 2) implementation 

and development of heparin-based MPs to temporally modulate protein presentation in 

cellular differentiation processes. The biomaterials employed in these studies include 

heparin, which has a high affinity for growth factors involved in differentiation and 

developmental processes [25], and PEG, which has low affinity for proteins and permits 

protein diffusion when cross-linked into hydrogels [27–29].  

To achieve the goals in the first focus area, a PEG-based hydrogel system was 

developed to evaluate the effects of cellular cross-talk in osteoblasts, adipocytes, and 

MSCs in co-culture under hyperglycemic conditions. Each cell type was cultured in 

separate PEG hydrogel blocks in a laminated co-culture system, allowing cell type-

specific retrieval for analysis after culture. In addition, the MSC block was enzymatically 
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degradable, permitting clonogenicity studies after co-culture. Finally, multivariate 

analyses were applied to better understand which variables contributed to observed cell 

phenotypes.  Overall, these studies were performed as a proof-of-concept experiment to 

demonstrate the utility in hydrogel-based co-culture systems for understanding how cells 

respond to dynamic cellular cross-talk in a disease model. 

In the second focus area, the ability of heparin to modulate cellular differentiation 

was assessed by incorporating heparin-based MPs into ATDC5 cell aggregates (a model 

cell line for endochondral ossification) and culturing monolayer ATDC5 cells in 

transwell culture with heparin MPs. To understand the mechanism behind heparin MP-

mediated changes in differentiation, PEG MP controls were evaluated alongside heparin 

MPs and protein sequestration in cell-conditioned media was studied. In addition, core-

shell heparin-PEG MPs were designed as a tool to temporally modulate soluble factors. 

By encapsulating heparin MPs in a degradable PEG-based shell that permitted protein 

diffusion, protein could be sequestered by the heparin MP and isolated from the 

surrounding environment prior to degradation of the PEG-based shell. Finally, degradable 

heparin-PEG-based MPs were developed to better control protein sequestration and 

release. 

The overarching rationale for this project is that development and utilization of 

hydrogel-based technologies can enable interrogation and modulation of cell behavior in 

dynamic systems. The overarching hypothesis of this work is that PEG-based hydrogels 

can be engineered to permit culture conditions and analysis techniques that account for 

cellular cross-talk, and heparin-based hydrogels can be employed to temporally modulate 
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cellular differentiation and protein presentation. These hypotheses will be addressed in 

the following three specific aims:  

Hypothesis I: Mesenchymal stem cells, adipocytes, and osteoblasts will respond to 

hyperglycemic conditions in a manner that is dependent on their neighboring cell type. 

Specific Aim I: Utilize a PEG-based platform to co-culture MSCs, osteoblasts, and 

adipocytes and evaluate gene expression, viability, and clonogenicity (MSCs only) in 

normal and high glucose conditions using multivariate analyses. 

 In vitro model systems of the bone marrow microenvironment have the potential 

to reduce complexity while still maintaining relevant components of the in vivo 

microenvironment [30,31]. Recently, photolithography and cell patterning techniques 

have enabled development of highly specified co-culture hydrogel systems, allowing cell 

and biomolecule patterning for a variety of applications [29]. In addition, the ability to 

maintain separation between cell populations while still permitting cellular 

communication in PEG-based hydrogels has been demonstrated [32,33]. Thus, PEG-

based hydrogels were used to investigate the potential role of MSCs in the dysregulation 

of adipocyte and osteoblast behavior observed in diabetic patients [30,34]. A deeper 

understanding of how MSCs cause and are affected by abnormal levels of marrow fat and 

bone mineral density could lead to new therapeutic approaches for osteoporosis in 

diabetic patients [22], and could lead to therapies that specifically target the stem cell 

niche [31,35].  

 In these studies, MSCs, adipocytes, and osteoblasts were cultured in mono-, co-, 

and tri-culture in laminated PEG hydrogel blocks in normal or high glucose conditions 

for 7 days, with timepoints at day 1 and 7. Each block was retrieved and analyzed for cell 
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viability and gene expression markers for osteogenesis, pro-bone formation, 

adipogenesis, pro-adipocyte function, energy metabolism, and glucose-responsiveness. 

The MSC block was designed to be enzymatically degradable by integrating an MMP-

sensitive sequence (GGGLGPAGGK) into the PEG network, and live MSCs were 

retrieved after collagenase-mediated degradation of the hydrogel. MSCs were then plated 

at clonal density to assess clonogenicity. Finally, multivariate analyses were employed to 

better understand how measured gene expression variables interacted to produce 

observed cell outcomes.   

Hypothesis II: Heparin MPs can temporally modulate endochondral ossification through 

sequestration of soluble factors in a dose-dependent manner. 

Specific Aim II: Evaluate the extent and timing of endochondral ossification in ATDC5 

cells with high and low doses of heparin MPs, in comparison to a low protein-binding 

PEG MP control.  

 A variety of techniques have been employed to modulate endochondral 

ossification and chondrogenesis, including culturing cells in aggregate or pellet culture to 

better mimic the 3D microenvironment [36], co-culture of MSCs and chondrocytes, and 

delivery of growth factors such as TGFβ and FGFs [37]. However, achieving a stable 

chondrocytic phenotype is still a challenge, and dedifferentiation in chondrocytes and 

hypertrophic differentiation in MSCs often occurs [37]. Heparin, a highly sulfated GAG, 

is known to bind a variety of growth factors involved in endochondral ossification [25]. 

Recently, the ability of heparin-based hydrogels to sequester cell-secreted growth factors 

and modulate cellular behavior has been demonstrated in models of angiogenesis, 

chondrogenesis, and osteogenesis [38–41]. Thus, by culturing heparin MPs with cells 
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undergoing endochondral ossification, it may be possible to use heparin to capture cell-

secreted growth factors and harness their pro-differentiation potential, thus controlling 

cell access to these growth factors and subsequent differentiation.  

 In this work, similarly sized heparin and PEG-based MPs were integrated into 

ATDC5 cell spheroids. Spheroids were cultured for 18 days and chondrocytic gene 

expression and matrix molecule deposition was assessed at days 1, 6, 12, and 18. To 

better understand if observed changes in cellular differentiation were due to the ability of 

heparin MPs to increase or decrease local concentrations of growth factors, monolayer 

ATDC5 cells were cultured in transwell with heparin and PEG MPs for 12 days. 

Chondrocytic gene expression was measured at days 6 and 12, GAG and mineral 

deposition was measured at day 12, and DNA content was measured at day 12. Finally, to 

evaluate the mechanism of action of heparin MP-mediated changes in cellular 

differentiation, protein sequestration in conditioned media and SDS-PAGE studies of 

proteins bound to heparin and PEG MPs were conducted.    

Hypothesis III: Heparin-based MPs can temporally control protein sequestration and 

release. 

Hypothesis IIIA: Core-shell MPs with a hydrolytically degradable PEG-based shell and 

heparin core can temporally control BMP-2 protein presentation to modulate C2C12 cell 

behavior.  

Specific Aim IIIA: Develop and characterize heparin-PEG core-shell MPs and evaluate 

their ability to sequester and release BMP-2-laden heparin core to elicit a response in 

C2C12 cells. 
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 Cell differentiation and tissue development processes require tight temporal 

control over growth factor presentation [3]. Traditionally, controlled delivery vehicles 

have been used to sustain the release of therapeutic proteins [10,42], but more precise 

temporal control over protein presentation is often required for tissue regeneration [3]. It 

has recently been suggested that biomaterials be used to modulate cell access to cell-

secreted growth factors, which would harness the potency of endogenous protein and 

eliminate the need for exogenous protein delivery [3]. For instance, protein-sequestering 

biomaterials could be used to either amplify the signals of desirable proteins [40,43–45] 

or eliminate those of undesirable proteins [46]. Combining these two techniques, it could 

be possible to sequester and isolate a protein that is undesirable at one point in time, then 

re-present that protein when its function is desirable at a later point in time [3]. As core-

shell MPs have been used both to sequester and isolate protein [47–50] as well as release 

it [51,52], it may be possible to utilize core-shell MPs to sequester and isolate cell-

secreted proteins until degradation of the shell, at which point the sequestered protein 

would be released back into the microenvironment.   

 In this work, heparin-PEG core-shell MPs were fabricated using a re-

emulsification technique to encapsulate pre-formed heparin MPs within a hydrolytically 

degradable PEG-based shell. Quantification methods indicated that core-shell MPs had 

tunable and predictable amounts of encapsulated heparin, and degradation studies 

indicated the ability of the shell to degrade and release the heparin core. Two loading 

methods were used to load BMP-2 onto core-shell MPs. In “pre-fabrication loading” the 

heparin core was loaded prior to formation of core-shell MPs, a technique that could be 

used for exogenous protein delivery from these core-shell MPs. In “post-fabrication 
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loading” the core-shell MPs were loaded after formation of core-shell MPs, a technique 

that could permit sequestration and eventual re-presentation of cell-secreted protein. 

Loading and release studies and a C2C12 BMP-2 bioactivity assay were conducted to 

evaluate the ability of core-shell MPs to temporally modulate release of a protein-laden 

heparin core.  

Hypothesis IIIB: Increasing the heparin content in hydrolytically degradable heparin-

PEG-based MPs will enhance protein loading and decrease protein release rate.  

Specific Aim IIIB: Develop and characterize hydrolytically degradable heparin-PEG-

based MPs with varying amounts of heparin and evaluate loading and release of histone, 

a model protein. 

 As heparin is a potent binder of proteins, it is often integrated into hydrogel 

delivery systems to enhance protein loading and prevent premature protein denaturation 

[53–56]. Recently, heparin MP delivery vehicles have been designed for release of 

therapeutic growth factors [57–59]. However, these heparin-based MPs have either been 

non-degradable or had degradation profiles that were difficult to control due to cross-

linking techniques. For tissue engineering applications that require precisely timed 

delivery of protein, a heparin-based MP with tunable degradation profile is required. In 

addition, a heparin-based MP with tunable amounts of heparin would allow more control 

over protein loading and release, as well as protein sequestration after delivery in vivo. 

Thus, in these studies, heparin-PEG-based MPs were developed and characterized. 

Dithiothreitol (DTT) was integrated into the MP network to accelerate hydrolytic 

degradation [60]. 0, 10, 20, 30, and 40 wt% heparin MPs were fabricated and evaluated 

for heparin content, degradation rate, and histone protein loading and release.  
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1.3 Significance and Scientific Contribution
1
 

 The work described in this thesis develops and utilizes biomaterials to both 

investigate and control complex and dynamic cell systems. For example, the abnormal 

conditions in disease states can cause changes in cell-cell crosstalk that have major 

implications on a tissue and organ scale, and a better understanding of this altered cross-

talk could leave to new disease interventions. In addition, controlling cell phenotype as it 

evolves in time during cellular differentiation could provide novel methods by which to 

control tissue development for injury and repair purposes. Thus, in this work dynamic 

cellular processes were interrogated by enabling cellular communication within a cell 

culture platform in hyperglycemic conditions and were modulated by integrating ECM 

molecules throughout a dense cell aggregate. Through these methods, proof-of-concept 

experiments demonstrated the necessity of designing in vitro culture platforms to permit 

cellular cross-talk and the utility of integrating heparin into cell aggregates to temporally 

modulate cell differentiation. In addition, heparin-based materials were designed to better 

engage with the cellular microenvironment by temporally controlling protein 

presentation. Overall, these studies highlight hydrogel-based technologies to enable better 

understanding and control of cellular processes in normal and disease states. 

 To demonstrate how hydrogel platforms can enable culture conditions and 

analyses techniques to investigate cellular cross-talk, PEG-based hydrogels were used to 

                                                 

 

 
1
 Portion of this section were adapted from T.E. Rinker, T.M. Hammoudi, M.L. Kemp, H. Lu, J.S. 

Temenoff, Interactions between mesenchymal stem cells, adipocytes, and osteoblasts in a 3D tri-culture 

model of hyperglycemic conditions in the bone marrow microenvironment., Integr. Biol. 6 (2014) 324–37. 

and from T.E Rinker, B.D. Philbrick, and J.S. Temenoff, Core-Shell Microparticles for Protein 

Sequestration and Controlled Release of a Protein-Laden Core, in revision. 
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co-culture MSCs, adipocytes, and osteoblasts under hyperglycemic conditions. The 

culture of each cell type in separate hydrogel blocks enabled individualized analyses of 

each cell type while still permitting cellular communication during culture. Additionally, 

the integration of an enzymatically-degradable peptide sequence within the PEG-based 

network of the MSC block allowed retrieval of viable MSCs for further culture and 

clonogenicity analysis. Finally, multivariate analyses techniques were employed to help 

identify combinations of gene expression markers that governed measured cell outcomes. 

Rather than analyze the gene expression of each protein individually, such a technique 

enables visualization of relationships between markers that can eventually be used to 

predict cell phenotype. The results of this work indicated that the primary source of 

variance in the system was a result of neighboring cell type, validating the use of 

hydrogels for co-culture systems to study disease. Thus, this hydrogel-based co-culture 

platform has unique capabilities that will enable future studies to elucidate how complex 

interactions between various cellular components are affected in pathological conditions. 

 To show the utility in incorporating ECM molecules into cell culture platforms to 

modulate cellular differentiation, heparin MPs were incorporated into ATDC5 cell 

aggregates. Unlike most biomaterial-based strategies, which depend upon protein 

delivery to elicit a cellular response, these studies rely solely on a heparin biomaterial to 

manipulate cellular differentiation. Such biomaterials-mediated sequestration strategies 

could reduce cost by eliminating the need for adding exogenous protein and may increase 

signaling efficiency, as cell-secreted growth factors are often more potent than 

recombinant protein [3]. In addition, unlike strategies that employ biomaterials that 

sequester one specific protein, heparin can sequester a multitude of proteins, enabling 



www.manaraa.com

 12 

heparin to continue to interact with a differentiating cell population as protein release 

evolves. 

Still, current methods for endogenous protein sequestration only allow immediate 

amplification or elimination of protein signals. Thus, core-shell heparin-PEG MPs were 

developed to temporally modulate protein presentation. The multifunctional core-shell 

heparin-PEG MPs presented here can evolve with time by sequestering proteins through a 

PEG-based shell onto a protein-protective heparin core, temporarily isolating bound 

proteins from the cellular microenvironment, and re-delivering these proteins only after 

degradation of the PEG-based shell. Thus, these core-shell MPs are a novel tool to 

harness and isolate proteins produced in the cellular environment and then control when 

these proteins are re-introduced for the most effective tissue regeneration and repair.  

Overall, this work shows the potential for biomaterial-based strategies to 

interrogate and modulate dynamic cell systems, both those that involve changes in cell-

cell crosstalk and those that involve changes in cell state. First, a PEG-based cell-culture 

platform that enabled culture of multiple cell types followed by individual cell-type 

analysis was combined with PCA to highlight the cell changes observed in response to 

neighboring cell type and hyperglycemic conditions. Then, heparin MPs were used to 

temporally modulate differentiation in an in vitro model of endochondral ossification, 

likely through protein sequestration. Finally, core-shell heparin-PEG-based MPs and 

hydrolytically degradable heparin-PEG MPs were developed to allow further, user-

defined control over temporally modulating protein sequestration and release. As a 

whole, this work provides insight into dynamic cellular processes and develops tools by 

which to further investigate or regulate these systems.  
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

2.1 Mesenchymal Stem Cells in the Bone Marrow Microenvironment 

2.1.1 Mesenchymal Stem Cells 

 Over the past several decades, the term “Mesenchymal Stem Cell (MSC)” has 

been used to describe two different populations of cells. The first population consists of 

postnatal, self-renewing, multipotent stem cells that give rise to skeletal tissue and are 

also referred to as skeletal stem cells [61]. This population has been rigorously tested 

through in vivo transplantation to generate replicas of bone containing host-derived 

hematopoietic marrow tissue and is known to regulate the hematopoietic 

microenvironment [61]. The second population is more heterogeneous and has been 

called several names that all fit the same acronym: multipotent stromal cells, 

mesenchymal stromal cells, and medicinal signaling cells [61]. These cells can be derived 

from every connective tissue and are defined by in vitro culture and metrics, including in 

vitro assays used independently of more stringent, in vivo assays and assessment of 

surface markers only after in vitro culture and expansion [61,62]. The inability to 

specifically and consistently refer to these two populations is one of the reasons that 

MSCs remain one of the most confusing and frustrating entities in stem cell biology 

[61,63]. In this review, we define MSCs as the cells described in the first population 

above. 

 Further confusion surrounding MSCs has arisen due to the isolation methods used 

for bone-marrow derived MSCs. Bone marrow cell suspensions contain both 

hematopoietic and non-hematopoietic stroma. Non-hematopoietic stroma, or stromal 
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cells, adhere to plastic, allowing separation of hematopoietic cells and stromal cells in 

vitro [61]. These stromal cells, called bone marrow stromal cells (BMSCs), include 

MSCs but must be further sorted to separate MSCs from other BMSCs [61]. In some 

studies, this distinction has not been made, which has led to additional confusion in 

regards to MSC function, identity, and potential applications [30,61].  

The focus of this review is bone marrow derived MSCs, which are found 

perivascular and on the endosteum, and give rise to adipocytes and osteoblasts, as well as 

support hematopoietic stem cells [62,64]. In vitro, MSCs are adherent, clonal cells 

isolated from bone marrow cell suspensions [30,62]. MSCs are defined by a set of surface 

markers (positive for CD105, CD73, and CD90; negative for CD45, CD34, CD14, 

CD11b, CD79a, CD19, and HLA-DR) and their ability to differentiation into osteoblasts, 

adipocytes, chondroblasts, fibroblasts, and hematopoiesis-supporting stroma [62,64]. 

While assessment of surface markers and differentiation potential has proven a somewhat 

effective way to identify MSCs, little to no evidence exists that these surface markers are 

present on MSCs in vivo, and many are also present on pericytes [65].   

Various applications have been proposed for MSCs, including tissue regeneration, 

immunomodulation, and release of trophic factors [64,66]. These pursuits have been met 

with varying success, as controversy about how best to expand MSCs, what is a “true” 

population of MSCs, and if it is truly MSCs responsible for immunomodulation and 

trophic factor secretion still exists [62]. In addition, little is understood about the 

anatomical location of MSCs and their role in tissue homeostasis [63,64]. For example, 

MSCs are known to reside in several different in vivo niches, and the phenotypical 

similarities between cells in each niche as well as their potential to self-replenish and 
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migrate remain poorly understood [30]. Finally, more work is required to understand 

surface marker differences between MSCs and their progeny prior to in vitro expansion 

[65]. Overall, more work must be done to trace the lineage of MSCs, better define the 

MSC population, and develop in vitro and in vivo assays to elucidate MSC function 

[30,62]. 

2.1.2 Mesenchymal Stem Cells in the Bone Marrow Microenvironment 

 Stem cell niches refer to the specific microenvironment that controls stem cell  

self-renewal, differentiation, and quiescence [67,68]. Relevant cues in the niche include 

soluble factors (growth factors, cytokines, etc.) derived from other niche cells, cell-cell 

interactions, cell-ECM interactions, oxygen level, level of reactive oxygen species, and 

tissue structure [31]. Within the bone marrow microenvironment, skeletal and 

hematopoietic progenitor cells exist alongside their progeny and other differentiated cells, 

such as sinusoidal endothelial cells, sympathetic nerve fibers, osteoblasts, osteoclasts, 

macrophages, and regulatory T cells [30,62,68,69]. Identification of other stem cells in 

the bone marrow microenvironment is still an area of active research, and will not be 

discussed here [62]. Mesenchymal stem cells are found in several locations within the 

bone marrow, including on the endosteum and perivascular, near the sinusoidal 

endothelium [68,69]. In the bone marrow microenvironment, MSCs have several 

functions, including regulating HSCs through a variety of soluble factors and giving rise 

to osteoblasts and adipocytes [68,69]. Still, much more needs to be uncovered about the 

in vivo cellular and molecular interactions of MSCs within the bone marrow niche [70]. 
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 The stem cell niche has attracted a lot of attention in the recent years, as it could 

be manipulated as a means to control stem cell behavior [30,35,67]. For example, it has 

been suggested that the niche be targeted to combat diseases like cancer and diabetes 

[67,69]. To gain a deeper understanding of 1) regulators of the stem cell niche and 2) how 

to change the niche in order to modulate stem cell behavior, development of in vitro 

model systems have been explored [30,67]. Often, these systems include multiple cell 

types and are three-dimensional, but incorporation of every aspect of the in vivo niche is 

not possible [31]. However, useful information that can be further explored in vivo can 

still be gained from these in vitro systems.  

2.1.3 Diabetes and its Effects on the Bone Marrow Microenvironment   

Diabetes mellitus types I and II affected 135 million people in 1990, and are 

predicted to affect 300 million by 2025 [71]. Categorized as a metabolic disease, diabetes 

is caused by lack of insulin production (primarily type I) and/or lack of insulin sensitivity 

(primarily type II) [72]. Insulin irregularities result in an inability to regulate blood 

glucose levels, which leads to a variety of complications, including chronic 

hyperglycemia [72]. Hyperglycemic conditions can cause debilitating dysfunction and 

failure of various organs, including eyes, kidneys, nerves, heart, and blood vessels [19]. 

In the bone marrow, hyperglycemia can result in sinusoid abnormalities and HSC 

dysregulation, as well as increased fat infiltration [69]. Additionally, hyperglycemic 

conditions result in excessive reactive oxygen species (ROS) due to glucose 

autooxidation, ROS overproduction by the mitochondria, non-enzymatic glycation, and 

the polyol pathway [73]. ROS can negatively affect cells through DNA, protein, and lipid 

damage, and increased oxidative stress can also lead to inflammation [73].  
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While diabetes alone is associated with morbidity and mortality, patients with 

diabetes are also at increased risk for diseases like osteopenia and osteoporosis, as well 

for bone fracture [19–21,74]. About 50% of patients with type I diabetes have bone loss, 

and 20% of patients ages 20-56 have osteoporosis [21]. Osteoporosis is defined by 

reduced bone mass and bone microarchitectural abnormalities, which results in reduced 

bone strength and increased fracture risk [72]. Clinically, osteoporosis is diagnosed by 

bone mineral density (BMD) measurements that are more than 2.5 standard deviations 

lower than the sex-matched young adult mean [72,75]. While decreased BMD has been 

observed in patients with type I diabetes, normal to above average bone masses have 

been observed in patients with type II diabetes [76]. However, both type I and II diabetes 

patients show higher fracture risk, indicating that other factors besides bone mass, such as 

abnormal bone microarchitecture, may be implicated in type II diabetes fractures [76,77]. 

In diabetes as well as other diseases such as osteoporosis and anorexia nervosa, BMD and 

marrow adipose tissue (MAT) are inversely related [17,18]. Increased MAT is observed 

in patients with diabetes type I and it is possible that MAT composition is different in 

patients with diabetes type II [76]. Still, this inverse relationship between BMD and MAT 

is not fully understood, and a deeper understanding of communication between cell types 

that make up these tissues could elucidate the biological processes that lead to abnormal 

levels of each tissue type. 

2.1.4 MSCs, Adipocytes, and Osteoblasts in the Bone Marrow Microenvironment 

 Within the bone marrow microenvironment, adipocytes and osteoblasts are both 

derived from MSCs and contribute to mature bone and MAT [22]. While bone has a clear 

function in adult physiology, the precise function of MAT is still unknown [18]. Some 
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speculate that MAT acts as an energy source for bone remodeling, an energy-intensive 

process, while other evidence has pointed toward MAT as actively modulating the 

hematopoietic stem cell (HSC)/MSC niche and osteogenesis through soluble factor 

signaling [18,22,74,78]. Interestingly, MSC lineage commitment to either progeny seems 

to be at the expense of the other [17,22,78]. For instance, the master regulator of 

adipogenesis,  peroxisome proliferator activated receptor gamma (PPARγ), is known to 

suppress osteogenesis, while the master regulators for osteogenesis, WNT and Runt-

related transcription factor 2 (RUNX2), are known to suppress adipogenesis [18,22]. As 

MSC lineage commitment is a result of signals from other cell types in the niche, 

including mature adipocytes and osteoblasts, as well as systemic signals, fate decisions 

are likely altered in disease states [22]. Additionally, mature adipocytes and osteoblast 

secrete signals that could affect each other. For example, adipocytes secrete leptin, which 

is believed to decrease bone mass [79–81], and adiponectin, believed to have an effect on 

proliferation and differentiation of osteoblasts [82]. Osteoblasts secrete osteocalcin, 

which aids in bone matrix mineralization [79], and osteoprotegrin, which suppresses 

osteoclastogenesis [72,82]. Thus, altered numbers of either cell type could result in 

increases or decreases in release of signaling molecules that cause and perpetuate 

abnormal levels of MAT or BMD.  

 As discussed, the inverse relationship between MAT and BMD could be a result 

of altered MSC differentiation in diabetic disease states. While the reasons for decreased 

BMD are unclear, it is speculated that higher levels of glucose could have direct, toxic 

impact on osteoblasts or negatively alter the ROS environment [21,74]. As increased 

marrow fat is observed in hyperglycemic conditions, it is possible that MSCs are 
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triggered to commit to the adipogenic lineage at the expensive of osteoblasts, thus 

shifting the bone remodeling process too far toward osteoclast-mediated resorption 

[21,22]. In addition, all three cell types have been found to respond adversely to 

hyperglycemic conditions [21]. MSCs show increased apoptosis and senescence and 

decreased colony-forming capacity and osteogenic potential in hyperglycemic conditions 

[83–86].When cultured in high glucose, adipocytes have decreased insulin sensitivity, 

dysregulated triglyceride storage, increased production of ROS and pro-inflammatory 

cytokines, and decreased adiponectin secretion [87–89]. Lastly, osteoblasts demonstrate 

reduced proliferative capacity, mineralization capabilities, collagen I synthesis, and 

expression of differentiation markers in hyperglycemic conditions [90–93]. Still, how 

hyperglycemia alters the cellular crosstalk between osteoblasts, adipocytes, and MSCs 

remains unclear.     

2.1.5 Co-Culture of Osteoblasts, Adipocytes, and MSCs
2
 

To better understand interactions between different cell populations, two- and 

three-dimensional (2D and 3D, respectively) co-culture systems have been employed in 

vitro [94,95]. Traditionally, 2D cell culture has been employed due to ease of use, 

convenience, and high cell viability [96]. Still, results from 2D culture must be 

interpreted with caution, 2D culture does not replicate many the important 3D 

components of the in vivo cellular microenvironment, including cell-cell and cell-matrix 
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Advances in Micro and Nanotechnology, 105-156, 2014. 
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contacts. 2D co-culture systems were used in several studies to investigate interactions 

between MSCs, osteoblasts, and adipocytes. In general, MSCs have shown enhanced 

osteogenesis when co-cultured with osteoblasts in either direct contact or transwell 

culture [97–101]. In one study, murine MSCs were cultured with osteoblast-like 

(MC3T3) or osteocyte-like (MLO-Y4) cells, and both ALP production and calcium 

deposition were higher in MSCs cultured with osteocytes, though osteoblast cells caused 

higher levels of MSC proliferation [101]. In another transwell study with murine MSCs 

(C3H10T1/2 cell line) and murine calvaria-derived bone cells (MC3T3 cell line), few 

differences were observed, though a slight increase in MSC ALP production was 

observed when the ratio of osteoblasts was decreased [100]. Conversely, a separate study 

with human MSCs in transwell co-culture with human osteoblasts showed upregulation 

of osteogenic markers [99]. One particularly interesting study showed that in indirect 

contact, osteoblasts stimulated osteogenic differentiation of MSCs, but in direct contact, 

inhibited osteogenic differentiation. Authors determined that in direct contact, the 

cadherin pathway suppressed the WNT pathway, which otherwise would have induced 

osteogenesis in MSCs [98]. Another co-culture experiment with murine osteoblasts and 

MSCs confirmed that the enhanced osteogenesis observed in MSCs was due to the WNT 

pathway [97]. Overall, osteoblasts appear enhance MSC osteogenesis or to have a 

negligible effect on MSC behavior. 

In co-cultures between osteoblasts and adipocytes, osteogenesis is generally 

severely decreased in the presence of adipocytes [102–104]. In a study with osteoblastic 

MC3T3 cells and 3T3-L1 pre-adipocytes, the adipocyte-secreted free fatty acids inhibited 

osteoblasts proliferation, induced apoptosis, and reduced osteogenic markers (ALP 
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activity,  RUNX2, ollagen I, and osteocalcin expression, and matrix mineralization) 

[104]. Similarly, a study with human adipocytes and human osteoblasts in transwell 

culture showed decreased osteogenic and increased adipogenic markers in osteoblasts, 

suggesting that transdifferentiation of osteoblasts into adipocytes may have occurred 

[103]. In line with the studies described above, primary human adipocytes caused 

decreased primary human osteoblast proliferation in transwell co-culture [102]. Few 

studies with MSC and adipocyte cultures have been conducted, and thus little is known 

about how these two cell populations affect each other. Overall, these studies indicate 

that MSCs, adipocytes, and osteoblasts clearly affect each other, probably both through 

soluble factor signaling and direct contact. More studies, possibly those that include a 3D 

culture platform and more comprehensive outcome measures, will need to be performed 

to fully elucidate how these effects might translate to in vivo observations within the bone 

marrow microenvironment.  

2.2 Endochondral Ossification 

2.2.1 Endochondral Ossification and the Growth Plate  

Endochondral ossification occurs in the process of bone development, during 

which mesenchymal cells condense to form a cartilage anlagen and either permanently 

differentiate into articular chondrocytes or take on a transient chondrogenic phenotype 

before proceeding through endochondral ossification [105]. Endochondral ossification 

begins when mesenchymal cells condense via adhesion factors and then begin to 

differentiate into chondrocytes, enlarging the cartilage anlagen [23,106]. The primary 

ossification center forms when a portion of these chondrocytes stop proliferating and 
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undergo hypertrophy, resulting in mineralization and vascularization of the tissue near 

what will become the diaphysis of the bone [23,106]. While this occurs, chondrocytes 

continue to proliferate and the cartilage grows [23,106]. These proliferative chondrocytes 

assume a flattened shape and stack on top of one another to form columns, oriented in the 

direction of developing bone [23,106]. Then, secondary ossification sites are formed at 

each end (epiphysis) of the bone [23,106]. The remaining cartilaginous tissue trapped 

between the two ossification centers is called the growth plate [23,106]. Chondrocytes in 

the growth plate continue to proliferate and undergo hypertrophy in a process tightly 

controlled by both local and systemic signals, allowing bone elongation until closure of 

the growth plate during puberty [23,106].  

Maintenance of these spatially and temporally distinct developmental stages 

depends on both systemic hormones and cellular communication between mesenchymal 

cells, chondroprogenitor cells, chondrocytes, and other cells in and around the growth 

plate [23,107]. The mechanisms behind how these growth factors travel long-range 

through the growth plate ECM and form concentration gradients are not entirely 

understood, but current evidence points towards GAGs as having a significant role [108]. 

Both chondroitin sulfate (CS) and heparan sulfate (HS) are thought to be involved in 

developing morphogen gradients and promoting receptor-ligand binding within the 

growth plate [106,107] (see Section 2.4.2 for more details). Additional studies should aim 

to use histological approaches to track protein and GAG movement and localization in 

organ culture or animal studies to further elucidate the role of GAGs in regulating growth 

factor-cell interactions. 
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At the first stage of endochondral ossification, SOX9 is required for the 

commitment of mesenchymal cells into chondrocytes, and growth hormone stimulates 

these resting zone (pre-proliferative) chondrocytes to secrete IGF-1, which enhances 

chondrocyte proliferation [106,109]. Several factors regulate proliferative chondrocytes. 

First, a negative feedback loop is created between Indian Hedgehog (IHH) and 

parathyroid hormone-related protein (PTHrP) to modulate the transition of proliferative 

chondrocytes into hypertrophic chondrocytes [23,106,109,110]. PTHrP is secreted by 

chondrocytes at the epiphysis of long bones, and prevents proliferative chondrocytes 

from undergoing hypertrophy [23,106,109,110]. However, when chondrocytes are out of 

range of PTHrP, they enter a pre-hypertrophic stage and begin to secrete IHH 

[23,106,109,110]. IHH acts to increase the rate of chondrocyte proliferation, delays 

hypertrophy, and through unknown mechanisms, stimulates the PTHrP secretion from 

chondrocytes at the end of long bones [23,106,109,110]. Another signaling molecule 

implicated in enhancing chondrocyte proliferation is BMP. BMP-2, 3, 4, 6, and 7 are 

expressed in the perichondrium, BMP-7 in proliferative chondrocytes, and BMP-2 and 6 

in hypertrophic chondrocytes [23,110]. Overall, BMPs are known to promote 

chondrocyte proliferation and also induce IHH expression [23,106,109,110]. FGFs are 

also important in growth plate regulation, and several receptors, including fibroblast 

growth factor receptor (FGFR) 2, FGFR3, and FGFR1 are expressed in mesenchymal 

condensations, proliferative chondrocytes, and hypertrophic chondrocytes, respectively 

[23]. FGF-1, 2, 15, 18, and 19 are all expressed in the growth plate and act through 

FGFR3 to repress proliferation and inhibit IHH production [23,106]. GAGs, most likely 

heparan sulfate, are necessary for these interactions [106]. During proliferation, 
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chondrocytes actively lay down ECM molecules like collagen II and aggrecan, and to a 

lesser extent biglycan and glypican [106,109]. Expression and secretion of these 

molecules are also controlled by the growth factors mentioned above [106].  

Finally, RUNX2 and WNT induce chondrocyte hypertrophy [23,106,110]. 

Hypertrophic chondrocytes are critical in bone development, as they provide a scaffold 

for subsequent bone formation [110]. These chondrocytes have increased levels of 

intracellular calcium and secrete collagen X as well as matrix vesicles that contain 

calcium phosphate, hydroxyapatite, and matrix metalloproteinases (MMPs) [109]. One of 

these secreted MMPs, MMP13, can degrade the collagen II matrix previously laid down 

by proliferative chondrocytes [106]. Hypertrophic chondrocytes also secrete vascular 

endothelial growth factor (VEGF), which, along with the hypoxic conditions in the 

growth plate, attracts blood vessels to the matrix [23,106,109,110]. Finally, hypertrophic 

chondrocytes near the ossification front undergo apoptosis, which is regulated by 

intracellular calcium levels, retinoic acids, and vitamin D [106,109]. Then, osteoclasts, 

osteoblasts, and bone marrow cells invade the newly ossified tissue [106]. Overall, 

endochondral ossification and maintenance of the growth plate are very tightly controlled 

processes, and disruption of even one of these signaling pathways can have severe 

consequences in long bone development. 

2.2.2 Growth Plate Injuries and Repair Strategies 

Injuries to the growth plate cartilage occur in 20% of childhood bone fractures 

and can result in bony bridge formation that hinders normal growth, resulting in limb 

length disparities, bone angulation deformities, and in severe cases, growth arrest 
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[111,112]. Current treatments involve correcting angular deformations and limb length 

discrepancies, and in some cases, removal of the bony bridge [112,113]. In an effort to 

prevent reformation of the bony bridge, filler substances such as transplanted fat, muscle, 

polymeric silicone, bone wax, and bone cement are injected into the defect [112]. These 

strategies are only partially successful and do not allow the tissue to return to its normal 

structure or function [112]. Currently, no biological therapies are clinically available, and 

development of a therapy that could promote regeneration and repair of the growth plate 

would be greatly beneficial [112,113].  

 Recent in vivo studies have highlighted the utility of using tissue engineering 

approaches to repair growth plate defects. In most approaches, a therapeutic cell type, 

either MSCs or chondrocytes, are seeded onto scaffolds made of collagen, chitosan, 

hyaluronic acid, agarose, or gelatin and then implanted into growth plate defects 

[111,113–118]. For example, chondrocytes within a collagen gel were implanted into a 

physeal defect in rabbits, which prevented early ossification and growth plate closure, 

and reduced angular deformity and limb length discrepancy [114]. In studies with 

miniature pigs, growth plate defects filled with MSCs within a collagen/chitosan gel did 

not show bone bridge formation, and affected limbs with MSC implants grew more than 

control limbs [118].   

In contrast to these positive results, implantation of a gelatin sponge seeded with 

MSCs into a growth plate injury in an ovine model caused formation of fibrous tissue and 

similar functional outcomes as control groups [113]. One particularly interesting study 

could point to reasons why variability is observed in MSC-based growth plate therapies. 

MSCs were either undifferentiated or pre-differentiated down a chondrocytic lineage, 
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then seeded onto an agarose gel and implanted into a growth plate defect in rats. While 

bone bridge formation was observed in all cases, limb length discrepancy was only 

observed in the group with undifferentiated MSCs [116]. This study highlights the 

necessity of ensuring high-quality MSCs for growth-plate cell therapies. Finally, one 

study attempted to deliver an IGF-loaded poly(lactic-co-glycolic acid) (PLGA) scaffold 

rather than a cell-seeded scaffold in a rabbit model, in an effort to stimulate endogenous 

cells in the growth plate. This technique was partially successful, as a thin layer of 

disorganized cartilage remained in groups with IGF-loaded scaffolds, compared to bony 

infiltration observed in all other groups [111]. Overall, tissue engineering strategies for 

growth plate injuries are promising, but more work needs to be done to evaluate proper 

cell types and scaffold materials. For example, due to their tendency to undergo 

endochondral ossification in vitro and in vivo [37], MSCs may be an ideal candidate cell 

type for growth plate regeneration, and as these studies indicate, control of this 

differentiation process through proper growth factor presentation as well as material 

interactions could improve outcomes.   

2.2.3 Articular Cartilage and Chondrogenesis 

 Articular cartilage is a hyaline cartilage found on the articulating surface of bones 

in joints, where it acts to provide a smooth, articulating surface and allows resistance of 

compressive forces [119]. Hypocellular in nature, cartilage consists primarily of collagen 

II, the proteoglycan aggrecan, and water [119,120]. Articular cartilage has a zonal 

arrangement in which cell and collagen fiber organization differ [119,120]. The 

superficial zone is in contact with the synovial fluid and consists of flattened 

chondrocytes and parallel collagen fibrils [119]. Moving toward the bone, the 
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intermediate or transitional zone consists of rounded chondrocytes and less organized 

collagen fibers [119]. Finally, in the deep/basal zone, the last layer prior to calcified 

tissue and the tidemark, rounded chondrocytes are oriented in vertical columns 

perpendicular to the articular surface [119]. Chondrocytes have long half-lives in normal, 

non-diseased states and act to balance matrix synthesis with matrix breakdown [119]. 

However, if this balance is disturbed by disease or injury, it can be very detrimental to the 

tissue and quite challenging to reestablish [119].  

   The formation and maintenance of adult articular cartilage remains poorly 

understood, but it is believed that as joints begin to form in the cartilage anlagen 

(“interzone” regions), both pre-existing chondrocytes and migrating progenitor cells 

make up the cell populations that become articular cartilage as cavitation and 

morphogenesis proceed [121,122]. Many of the same growth factors involved in 

endochondral ossification, including BMPs, growth differentiation factors (GDFs), 

TGFβ, and IHH, are thought to be involved in the development and maintenance of 

articular cartilage [121]; however, the mechanism by which these growth factors function 

in articular cartilage remain unknown. Though chondrocytes of the articular cartilage are 

more stable than growth plate chondrocytes, articular chondrocyte dedifferentiation can 

occur with age and during disease, suggesting that maintenance of articular cartilage 

requires strict control over environmental factors throughout life [121,123].   

2.2.4 Cartilage Injury and Repair 

Injuries to articular cartilage, resulting from degenerative joint diseases or 

traumatic injury [124], can result in pain, loss of mobility, and disability [37,125]. In 
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2005, arthritis, one of the degenerative joint diseases aforementioned, affected 70 million 

US adults, and the economic burden of arthritis in the US was estimated to be $60 billion 

in 2000, and estimated to increase to $100 billion by 2020 [126]. The severity of cartilage 

injuries can vary depending upon the type of trauma and the zones affected [119]. 

However, common to most injuries is the increased concentration of proteolytic enzymes 

and cytokines, leading to tissue degradation [119]. As previously mentioned, high rates of 

collagen turnover in disease states or injuries can result in chondrocytes unable to replace 

lost collagen, resulting in loss of a well-organized matrix, mechanical failure, matrix 

degeneration, and arthritis [119]. In addition, if a large portion of cartilage is lost, severe 

degradation of the remaining matrix can occur [119]. If the injury penetrates the 

tidemark, a temporary fibrocartilage matrix may be secreted to fill the defect, but this 

matrix does not have the same mechanical properties as cartilage and is often lost over 

time, resulting in areas of exposed bone [119].  Overall, due to its low capacity for 

healing, articular cartilage injuries have poor clinical outcomes [119,120]. 

Several treatments are used for articular cartilage therapies, including non-

reparative strategies like debridement, chondral shaving, and lavage; reparative methods 

such as arthroplasty and microfracture; and finally regenerative methods such as joint 

replacements, cartilage autografts and allografts, and autologous chondrocyte 

transplantation [126,127]. Some of these regenerative methods have proved promising. 

For example, in autologous chondrocyte transfer, cartilage from a non-load bearing 

region is used to obtain autologous chondrocytes for re-implantation in the defect 

[37,125]. While this procedure is partially successful in many  cases, it is associated with 

several problems, including growth of fibrous tissue, creation of additional injury site 
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when obtaining autologous chondrocytes, low cell yield of the cartilage biopsy, 

dedifferentiation of autologous chondrocytes in monolayer expansion, reduced 

chondrogenic potential of chondrocytes from aged patients or patients with osteoarthritis, 

and large inter-donor variability in the performance of autologous chondrocytes 

[125,128]. 

To mitigate these challenges, MSCs have been explored as an alternate cell source 

for cartilage repair, but inducing MSC chondrogenesis and maintaining a stable 

chondrogenic phenotype has thus far proved challenging, limiting their therapeutic 

potential [125]. When MSCs undergo chondrogenic differentiation in vivo, the 

chondrocytic phenotype is transient, as cells appear to be programmed for endochondral 

ossification, and thus eventually undergo hypertrophy and mineralization [37]. A variety 

of techniques have improved outcomes, including delivery of growth factors such as 

TGFβs, BMPs, FGFs, IGFs and PTHrP [37,129,130] as well as co-culture with articular 

chondrocytes [128,131–135].  Still, investigation of new techniques to promote and 

maintain the MSC chondrocytic phenotype is an active field of study.   

2.3 In Vitro Cell Culture Systems 

2.3.1 Hydrogels for In Vitro Cell Culture
3
 

 Recently, it has been realized that the culture of cells in 2D  limits the inclusion of 

parameters known to be important in the 3D in vivo environment, where cells have an 

ECM meshwork on which to communicate [2,4,96,136–139]. These parameters include 
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mechanical cues, communication between cells and matrix, and communication between 

adjacent cells [4]. To integrate these parameter into in vitro cell culture systems, 

hydrogels are  often used, as they are versatile, porous 3D constructs consisting primarily 

of water, providing a low barrier to soluble factor diffusion between cells [2,140,141]. In 

addition, hydrogels tend to be biocompatible and nonimmunogenic, and able to mimic the 

physical properties of tissues [29,142]. Synthetic and natural polymers can be used to 

form gels, either of which can be modified to achieve desired bioactivity [2,140,141]. 

Examples of natural materials include collagen, fibrin, hyaluronic acid, Matrigel, 

alginate, agarose, and GAG based scaffolds [29,143]. While natural materials can be 

useful, given their potential to provide cells with signals commonly found in the ECM, 

they tend to be heterogeneous and can have ill-defined properties [29].  

 Synthetic materials often cannot interact with cells prior to modification, 

providing researchers with a blank template to chemically modify [29]. Examples of 

synthetic materials include PEG, poly(2-hydrosy ethyl methacrylate), poly(acrylamide), 

and poly(N-isopropyl acrylamide), which do not naturally promote cell attachment, but 

can be modified with a variety of ECM protein sequences (i.e. RGD from fibronectin, 

YIGSR from laminin, or GFOGER from collagen) that encourage cell adhesion 

[29,143,144]. PEG is especially useful as it is FDA approved and tends to be protein, and 

thus cell, repulsive, allowing patterning of cells through specific placement of 

biomolecules [29,143,144]. Thus, established and emerging techniques to modify both 

natural and synthetic materials have allowed 3D hydrogel culture systems to better mimic 

the in vivo cellular microenvironment, and promise to enable more accurate analyses of 

dynamic cell behavior. 



www.manaraa.com

 31 

2.3.2 Integrating Complexity into Hydrogel-Based Culture Platforms 

 3D cell culture platforms are most often engineered to achieve one of two goals: 

1) develop a template to form a functional tissue or 2) create a platform for disease 

models [29,145,146]. Both of these applications require precise control over spatial 

localization of biomolecules, geometries, and mechanical properties [29]. Several 

techniques are used to pattern hydrogels for tissue engineering applications. Traditional 

techniques, such as solvent casting/particle leaching, freeze drying, and gas foaming 

allow for porous scaffolds with controllable mechanical properties, but are not able to 

provide the spatial patterns often desired for cell culture systems [29,143]. Recently, 

bioprinting has been used to deposit cells and prepolymer hydrogel solutions in specific 

spatial locations in a layer-by-layer approach [29]. While this technique is automated and 

can be used to develop relatively large layers of cells/polymer solutions, it is limited in its 

polymer and cell compatibility [29].  

 Photolithography, the use of light or photons to transfer the shape of a mask onto 

a light-sensitive surface, has been used to successfully pattern a variety of cell types, 

including hepatocytes, fibroblasts, C2C12 cells, endothelial cells, cardiac stem cells, 

HT1080 cells, embryonic stem cells, neurons, MSCs, osteoblasts, and adipocytes 

[29,32,33]. This technique can be applied in several different manners. In the simplest 

method, a photomask is developed and UV light is used to crosslink a photo-sensitive 

polymer solution that is not covered by the mask [29,33,147,148]. This method has been 

used to pattern RGD peptide sequences into PEG-DA hydrogels, achieving specific 

localization of human dermal fibroblasts [148]. In addition, a co-culture hydrogel with 
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spatially patterned tendon fibroblasts and MSCs was developed through use of 

photolithography and microfluidics [33].  

 Lithography techniques can also be carried out with lasers, in which multi-photon 

laser scanning techniques can be used to generate free-radicals at precise spatial 

locations, thus enabling reactions between the functional groups of a scaffold and 

biomolecules only at desired locations [146]. For example, multi-photon laser scanning 

was used to pattern RGD-peptides into vessel features, promoting human umbilical vein 

endothelial cells (HUVECs) and mesenchymal progenitor cells to organize around 

tubular networks in PEG-DA hydrogels [146]. In another study, two-photon laser 

scanning was used to pattern RGD into PEG-DA hydrogels to guide cell migration, as 

human dermal fibroblasts only migrated to areas of the hydrogel functionalized with 

RGD [149]. Finally, multi-photon lithography has also been used to develop selective 

patterning of a collagenase-sensitive peptide in PEG-DA hydrogels, which in the future 

could allow for cell-mediated gel degradation in specific, user-defined locations [150]. 

Thus, a variety of techniques are available to integrate complexity into 3D hydrogel cell 

culture systems. This complexity, which enables scaffolds to evolve with time through 

use of temporally controlled degradation or patterning of biomolecules, can guide 

dynamic cell behavior using strategies that mimic functions of the native ECM. Further 

assessment of ECM-cell interactions should be used to guide the design of future cell 

scaffolds. 

2.3.3 In Vitro Disease Model Systems for the Bone Marrow Microenvironment 

 In vitro models of disease can often enable deeper understanding of disease 

progression and potential therapies than can be gained in vivo [5,151]. While in vitro 
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model systems cannot account for systemic effects of disease or the drugs that treat them, 

they do allow for specific questions to be asked and assessed in an isolated system with 

reduced complexity as compared to the in vivo environment [5,151]. In addition, in vitro 

model systems allow for the use of human cells, which is helpful for cases in which 

animal and human cells behave differently and can reduce the likelihood of failure in 

clinical trials [5,151]. Finally, in vitro models allow for high-throughput assessment of 

various disease conditions and drugs [5,151]. Recently, it has been realized that relevant 

cellular communication as well as three-dimensional microenvironments are important 

factors for many disease models, and co-culture of two or more cell types as well as 

utilizing 3D scaffolds and hydrogels are frequently employed in disease models [5,151].  

 As discussed in Section 2.1, the bone marrow microenvironment is home to 

multiple cell types, including at least two stem cell populations, the mesenchymal stem 

cell and the hematopoietic stem cells, as well as mature endothelial cells, adipocytes, 

osteoblasts, and other hematopoietic progeny [31]. While the bone marrow 

microenvironment has been studied in vivo, in vitro models of the bone marrow 

microenvironment could be a powerful tool to study hematological diseases, MSC 

behavior in various conditions, and the relative contribution of different cell types in the 

niche to stem cell maintenance and behavior [31,152]. Historically, models of the bone 

marrow microenvironment have strived to better understand HSC behavior [31,152].  

Conventionally, a stromal feeder cell layer has been used to maintain HSCs in vitro, but 

these experiments have often been conducted on 2D surfaces that do not mimic the 3D 

microenvironment [31].  



www.manaraa.com

 34 

 In response, 3D models of the bone marrow microenvironment have been 

generated. In one example, 3D spheroids of MSCs and osteoblasts were used to study the 

migration, lodgment, and proliferation of HSCs [153]. It was observed that HSCs were 

more likely to home and remain inside spheroids with MSCs and osteoblasts as opposed 

to just MSCs alone [153], a result that would not have been possible to observe in a 2D 

system. In another system, bone marrow stromal cells were cultured on 3D ceramic 

scaffolds with hematopoietic cells under perfusion, and higher rates of bone formation 

were observed as compared to 2D cultures [154].  Another study showed that MSCs, 

which can reside in the perivascular niche, had enhanced osteogenesis and inhibited 

adipogenesis when cultured with HUVECS as opposed to fibroblasts [155]. These in 

vitro models of the bone marrow microenvironment indicate that cellular communication, 

as well as a 3D environment, are important for cell function and lay foundations for 

future disease models and in vitro drug testing.  

 Several in vitro model systems of the bone marrow microenvironment have 

demonstrated investigation of disease conditions and testing of therapeutics. One system 

modeled the ability of “third party”, or undamaged, MSCs to aid in hematopoietic cell 

transplantation after the damaging of resident stroma by toxic conditioning regimes 

(conducted to prepare tissues for transplantation) [156]. Third party MScs were able to 

enhance growth of the damaged stroma, a potential new strategy to improve 

hematopoietic cell transplant [156]. Another system modeled chronic myeloid leukemia 

(CML) by culturing osteogenesis-induced MSCs and bone marrow mononuclear cells 

from patients with CML on decelluralized bone [157]. Overall, results indicated that the 

3D system was more likely than a similar 2D system to recapitulate the progression of 
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leukemia, and will allow more studies to be conducted in the future [157]. Finally, an 

artificial bone marrow microenvironment was developed by implanting a 

polydimethylsiloxane (PDMS) device coated with collagen I and bone-inducing powder 

in a mouse to create functional bone and bone marrow in vivo [158]. Then, the device 

was retrieved, connected to a microfluidic device, and co-cultured with HSCs under 

perfusion, which enabled maintenance of a larger population of long-term HSCs than 

traditional stroma-feeder layer culture [158]. Finally, the system responded to radiation 

and a radiation countermeasure drug in a similar fashion to in vivo marrow, validating the 

platform for further disease and drug testing [158]. Overall, these studies highlight the 

ability to better understand the bone marrow microenvironment through in vitro models, 

and suggest that utilization of in vitro models will enable deeper understanding of bone 

marrow disease and treatments. 

2.3.4 Modulating Chondrogenesis In Vitro 

 In vitro models of chondrogenesis are often used to investigate the influence of 

various materials, soluble factors, and other cell types on chondroprogenitor cells and 

chondrocytes. In this section, the in vitro culture of bone marrow-derived MSCs will be 

considered. Chondrogenic differentiation of MSCs is generally carried out in 3D, either 

in dense cell aggregates or within a scaffold, which are often hydrogel-based [37]. A 

variety of materials have been used for hydrogel-based scaffolds for chondrogenic 

differentiation of MSCs, including CS, heparin, hyaluronic acid (HA), alginate, agarose, 

collagen, fibrin, polypeptides, chitosan, cellulose, PLGA, and poly(lactic acid) (PLA), 

and PEG [38,39,159–162]. As CS and heparin will be discussed further in Section 2.4.3, 

they will not be included here. A variety of material properties can influence 
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differentiation, including hydrogel cross-linking density. For example, increased cross-

linking density in HA-based hydrogels resulted in decreased cartilage matrix deposition 

and increased hypertrophy in encapsulated MSCs [163,164]. Similarly, enhanced MSC 

chondrocytic differentiation was observed with increased permeability of poly(ε-

caprolactone) scaffolds [165]. While the exact mechanism is unknown, it is speculated 

that increased scaffold permeability enhanced nutrient (and likely growth factor 

supplement) diffusion to MSCs, and may also be conducive to formation of cellular 

condensations [163–165].  

 Another important hydrogel property is the ability of cells to adhere to the gel, 

usually achieved by integrating biochemical moieties into the hydrogel that facilitate 

integrin binding. However, the distribution (or relative spacing) of these binding sites can 

influence MSC differentiation. For example, as the density of the fibronectin-derived 

peptide sequence RGD was increased in alginate hydrogels, MSC chondrogenesis was 

increasingly inhibited, possibly due to restrictions in integrin clustering [166]. However, 

this does not indicate that cell adhesion to hydrogels is not important for chondrogenesis, 

as a study with agarose hydrogels and polypeptide hydrogels showed significantly higher 

MSC chondrogenesis in the polypeptide hydrogels, likely due to cell adhesion [167]. 

Similarly, in a study with adipose derived stem cells, enhanced chondrogenesis was 

observed on collagen type II as compared to collagen type I gels, likely due to integrin-

mediated signaling pathways allowing cells to take on a rounded shape [168]. Finally, 

protein-binding properties of hydrogels can modulate growth factor concentration in a 

manner that enhances or restricts differentiation. While a more extensive overview is 

provided in Section 2.4.5, one example is the ability for sulfated alginate hydrogels to 
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enhance MSC chondrogenesis as compared to alginate hydrogels due to increased TGFβ-

1 binding [169]. Overall, the properties of the materials used to culture MSCs can 

influence chondrogenic potential. 

 In most cases, chondrogenesis is induced with soluble factors, which can be 

delivered individually, in combination, or over time [170]. Growth factors delivered 

include TFGβs 1,2, and 3; BMPs 2,4,6,7,9, 13, and 14; FGF-2; and IGF-1 [161,170], 

most of which are involved to some extent in endochondral ossification in vivo (see 

Section 2.2.1) [23]. While the impact of these growth factors varies greatly from 

experiment to experiment and is dependent on culture conditions, TGFβs appear to be the 

most chondro-inducive, while FGF-2 is often observed to enhance chondrocyte 

proliferation rate [170]. BMPs and IGFs are occasionally added in combination with 

TGFβs, but effects vary drastically, likely due to cell source and culture conditions 

[161,170]. Because growth factor concentrations change during chondrogenic 

differentiation in vivo, temporally controlled delivery of growth factors has been 

suggested as a means to better control differentiation [37], and has been met with some 

success [129,170]. While delivery of growth factors to induce chondrogenesis shows 

promise, optimal combinations and delivery timelines remained to be determined. 

 Recently, co-culture of MSCs with chondrocytes has been explored as an alternate 

mechanism to direct chondrogenic differentiation. Several studies have investigated the 

influence of chondrocyte-conditioned medium on MSCs [131,171], but found that direct 

co-culture between MSCs and chondrocytes produced much stronger increases in 

chondrocytic markers and decreases in hypertrophic markers [131], suggesting that 

cellular communication is required for improved MSC chondrogenesis in the co-culture 
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context. To this point, co-culture studies that have been conducted in transwell systems 

[128,132] and on scaffolds and hydrogels [133–135] have shown the potential of co-

culture to induce MSC chondrogenic differentiation. In addition, co-culture pellet 

systems have been investigated as a means to both induce MSC chondrogenesis and 

prevent MSC hypertrophy and chondrocyte de-differentiation. In several studies, it has 

been shown that MSC in pellet co-culture with chondrocytes at ratios ranging from 50:50 

to 95:5, respectively, have shown enhanced chondrogenesis and a reduction in 

hypertrophic markers as compared to monoculture controls [128,134,172,173]. These 

studies suggest that the communication between chondrocytes and MSCs allows 

maintenance of the chondrocytic phenotype. Overall, chondrogenesis is strongly 

dependent on both scaffolds and soluble factor delivery. However, techniques that utilize 

scaffolds and soluble factors in a manner that accounts for the dynamic temporal changes 

that occur during differentiation have yet to be fully realized. 

2.4 Glycosaminoglycans and Protein Sequestration 

2.4.1 Function of Heparan Sulfate and Heparin  

Heparan sulfate (HS) and heparin are GAGs of similar structure that are 

implicated in regulating both developmental processes and adult tissue homeostasis 

through their strong affinity to proteins [174,175]. The diverse function of HS and 

heparin can be attributed to their structure. HS and heparin are polysaccharide chains of 

repeating disaccharide units (uronic acid residue and a glucosamine residue) that can be 

modified by the addition of sulfate groups [26,174,176]. Overall, heparin has a much 

higher degree of sulfation, more negative charge, and is less structurally diverse than 

heparan sulfate [177]. Another difference between HS and heparin is the common uronic 



www.manaraa.com

 39 

acid residue found in their disaccharide repeat units. While an N- and 6-O-sulfated or N-

acetylated D-glucosamine residue is common for both,  2-O-sulfated L-iduronic acid and 

D-glucuronic acid are the common uronic acid residue for heparin and heparan sulfate, 

respectively [26]. The specific sulfation pattern and the overall strong negative charge of 

HS and heparin GAGs are thought to be two of the primary factors that allow protein 

interactions [175]. In the body, HS is attached to membrane-bound (syndecans, 

glypicans, betaglycans) or ECM associated (perlecan, agrin, collagen XVIII) core 

proteins to form HS proteoglycans (HSPGs) [174,175]. On the cell membrane, HS acts to 

facilitate ligand-receptor binding and in the ECM, participates in the development of 

morphogen gradients and is thought to protect growth factors from degradation 

[174,175,177,178]. Alternatively, heparin is found primarily in connective-tissue type 

mast cells, attached to the core protein serglycin in intracellular storage granules 

[26,175]. When released from the cell, heparin acts as an anticoagulant in the coagulation 

cascade either directly or indirectly by enhancing antithrombin-thrombin binding 

[177,179].  

HS has been found to bind over four hundred proteins, including growth factors, 

enzymes, cytokines, and ECM molecules, and is implicated in diverse processes such as 

ECM assembly, cell signaling, and developmental processes [180]. Growth factors are of 

particular interest in tissue engineering applications, and HS facilitates signaling and 

gradient formation for a plethora of growth factors [178]. For example, heparan sulfate is 

known to act as a co-receptor between FGF-2 and its cell surface receptor and effectively 

reduces the concentration of FGF-2 required to initiate signaling and prolongs the 

signaling response [174]. It has also been suggested that heparan sulfate modulates the 
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range that IHH can travel in vivo, and may act as a low affinity binding agent to present 

the protein at the cell surface [178]. Heparan sulfate is believed to function similarly with 

BMP-2, as studies with decapentaplegic (DPP), the drosophila homolog for BMP-2, 

found that genetic modifications reducing heparan sulfate concentrations resulted in 

decreased ability for DPP to travel long distances [181]. Finally, evidence from studies 

with Wg, the WNT homolog in drosophila, indicate that heparan sulfate likely acts to 

protect Wg and enables it to travel longer distances, and also may act as a co-receptor at 

the cell surface [182]. Overall, these studies point toward modulating growth factor 

concentration and presentation to the cell surface as a major role for heparan sulfate.   

2.4.2 Heparan Sulfate and Other Glycosaminoglycans in Chondrogenesis 

 To study how HS and HSPGs influence endochondral ossification (as well as 

many other developmental processes), typically genes or enzymes essential to HS 

production or sulfation are knocked-out or knocked-down in murine animal models and 

resulting phenotype is evaluated [183]. In one such study, the HSPG perlecan was 

knocked-out and reduced chondrogenic differentiation and matrix deposition was 

observed [184], possibly indicating a requirement for matrix-associated HS in driving 

differentiation. In contrast, another study indicated that higher than normal levels of 

sulfated GAGs reduced differentiation. In this study, knock-out of Sulfatase-Modifying 

Factor 1 (Sumf1; master regulator of proteoglycan desulfation) prevented GAG 

desufation. Overall, it appeared that higher than normal levels of GAG sulfation 

prevented differentiation from proceeding, likely due to increased FGF signaling [185]. 

Similar evidence of HS involvement in controlling spatial localization of growth factors 

has been found in several studies in which exostosin glycosyltransferase 1 (EXT1), an 
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enzyme responsible for polymerization of the HS chain, was knocked-down, resulting in 

reduced levels of HS. In one study, this increased the distance over which IHH could 

have an effect, possibly indicating that the normal function for HS is to sequester IHH 

and restrict its distribution and long range transport throughout the tissue [186]. 

Similarly, when EXT1 was knocked down in chondrocytes, ectopic cartilage formation 

was observed around the growth plate, likely due to increased proliferation of 

chondrocytes in abnormal spatial locations due to the loss of the ability of HS to control 

and restrict BMP-2 movement through the ECM [187]. Many similar studies have been 

conducted, and while these studies are only beginning to elucidate the true roles of HS 

and HSPGs in chondrogenesis, they all indicate that HS is necessary for tissue 

development, likely due to its ability to modulate growth factor signaling and matrix 

distribution. 

2.4.3 Glycosaminoglycan-Based Biomaterials for Cartilage Repair 

 GAGs such as CS, dermatan sulfate, HA, and heparin have been integrated into 

scaffolds to enhance chondrocytic differentiation of chondrocytes and mesenchymal stem 

cells [38,39,159,160]. The focus of this section will be on CS and heparin, two highly 

sulfated GAGs that are likely to be involved in protein sequestration in a chondrocytic 

environment. Cartilage tissue scaffolds are often composed of a base material, such as 

collagen II, chitosan, or synthetic polymers, into which GAGs are incorporated 

[38,160,188–191]. Chondroitin sulfate is a commonly used GAG in cartilage repair 

scaffolds, and generally enhances the chondrocytic phenotype of cells encapsulated in or 

seeded on the scaffold [160,189–192]. Heparin is used less frequently, but has been 
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incorporated into dextran-based hydrogels and shown to enhance chondrocyte 

differentiation as compared to dextran controls [38].  

 GAGs are incorporated into scaffolds for several reasons, including to better 

mimic the natural cartilage ECM, enhance cell adhesive properties, control mechanical 

properties through increased water retention, and modulate protein presentation to cells 

[38,160,189–194]. As TGFβ-1 or 3 is often used as a supplement in chondrocytic cell 

culture, it is possible that GAGs in the scaffold sequester and prolong its activity, further 

enhancing chondrocytic differentiation [38,194]. Evidence of this was found in a study in 

which heparin or desulfated heparin was coated onto MSC aggregates, and it was shown 

that chondrogenesis was enhanced in the desulfated heparin group as compared to the 

fully-sulfated group or non-coated group. In these studies, it is possible that 

supplemented TGFβ-1 was attracted to both heparin and desulfated heparin, but that 

desulfated heparin resulted in increased detachment of TGFβ-1, as the coating was less 

charged, which was then better able to interact with cells [195]. Overall, GAGs have been 

used to enhance chondrogenesis with moderate success, likely due to modulation of 

protein sequestration and presentation to cells. Interestingly, similar to their natural 

function in vivo, these GAGs are able to bind a plethora of proteins involved in 

differentiation over time, enabling them to act upon multiple differentiation stages. 

However, in-depth analyses of how GAGs themselves modulate cellular differentiation 

due to protein binding have yet to be conducted. 

2.4.4 Heparin-Based Biomaterials 

 Given their high affinity for a plethora of growth factors and proteins (often with 

dissociation constants ranging from 10
-6

-10
-9

 M), heparin and heparan sulfate have been 
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used for a variety of tissue engineering applications [9]. Because interactions with 

heparin and heparan sulfate are specific but not covalent, they allow for protection and 

sustained release of growth factors, mimicking the role of ECM components in vivo [9]. 

Overall, heparin and heparan sulfate are biocompatible, relatively non-toxic, and 

inexpensive [196], incentivizing their use in vivo. As such, heparin and heparan sulfate 

have been delivered to modulate endogenous protein, used in cell culture systems to 

modulate protein localization, and used in delivery vehicles to enhance protein affinity.  

 Heparan sulfate has been mixed into hydrogel-based delivery systems and 

implanted into injury models to evaluate healing without delivery of exogenous growth 

factors. In one example, heparan sulfate was mixed with carboxymethylcellulose/glycerol 

to form a gel and implanted into a critical sized bone defect in a rat femur [197]. After 

two weeks, significantly improved bone formation was observed in the low dose heparan 

sulfate group, as compared to no and high heparan sulfate groups [197]. While the 

mechanism of action is unknown, it was hypothesized that the ability of heparan sulfate 

to interact with endogenous proteins was responsible for the enhanced differentiation 

[197]. In addition, the diminished effectiveness at high dosage may have been due to 

increased binding of growth factors, therefore decreasing growth factor availability to 

cells. In another example, heparan sulfate was mixed with fibrin glue and implanted into 

a critical sized cranial defect in a rat model [198]. After 3 months, enhanced defect 

closure was observed in the group with heparan sulfate, as opposed to control groups 

[198]. These two studies indicate the ability of heparan sulfate modulate the local cellular 

microenvironment, likely through growth factor binding.  
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 Heparin has also been cross-linked into hydrogels for cell encapsulation and 

controlled growth factor delivery. Heparin can be physically encapsulated (through 

entanglement or electrostatic interactions) or covalently cross-linked into hydrogel 

matrices [9]. Heparin has been incorporated into PEG, HA, peptide-based, poly(N-

isopropylacrylamide-co-acrylic acid), poly(vinyl alcohol), poly(L-lactide-co-ε-

caprolactone), dextran, alginate, and chitosan based hydrogels [38,53,54,196,199–203]. 

Heparin-based hydrogels for cell encapsulation have often been used toward the goal of 

inducing osteogenic or chondrogenic differentiation. In one example, methacrylated 

heparin was cross-linked with PEG-dimethacrylate for encapsulation of MSCs, and was 

shown to enhance osteogenesis, possibly through enhanced presentation of fibronectin 

and BMP-2 [45]. In another example, encapsulation of cardiac progenitors in a heparin-

hyaluronic acid hydrogel enhanced cell differentiation [41]. Assessment of growth factors 

trapped within the hydrogel indicated that heparin-mediated sequestration of endogenous 

factors was likely a contributing factor to improved cell behavior [41]. Similar results 

were observed when MSCs encapsulated in PEG-DA/oligo(poly(ethylene glycol) 

fumarate) (OPF) and heparin methacrylamide (MAm) hydrogels were co-cultured with 

osteoblasts [40]. Enhanced MSC osteogenesis was observed as heparin content in the gels 

was increased, possibly due to the ability of heparin to trap osteoblast-secreted factors 

that promoted MSC differentiation [40]. Another study indicated that heparin-thiol PEG-

DA hydrogels were able to trap endogenous TGFβ-1, enabling re-differentiation of de-

differentiated chondrocytes [39]. Finally, enhanced chondrogenesis was observed in 

chondrocytes encapsulated in dextran-tyramine/heparin-tyramine gels cross-linked with 

horseradish peroxidase, likely due to either improved fibronectin or growth factor 
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presentation to cells [38]. These studies suggest that heparin-based hydrogels can 

modulate both endogenous and exogenous protein presentation to cells for enhanced 

differentiation.  

Heparin has been used to enhance protein loading and stability in many controlled 

delivery vehicles [3,11,42,196]. Often, heparin is covalently modified and cross-linked 

into hydrogels to control delivery of proteins such as FGFs, BMPs, VEGFs, TGF-βs, and 

other positively charged proteins to enhance osteogenesis, chondrogenesis and wound 

healing [53,54,56,204]. In general, reduced burst released and lower overall release is 

observed in hydrogels that contain heparin due to increased attraction of proteins to the 

hydrogel system [56,200,203,205]. In one case, this resulted in an inability to enhance in 

vivo bone formation with BMP-2 delivery from a heparin-based hydrogel, likely due to 

reduced early protein release [205]. However, sustained release of BMP-2 from a 

heparin-poly(L-lactide-co-ε-caprolactone) scaffold improved mineralization at the 

ligament-bone interface [201], indicating that heparin and BMP-2 dosage must be tightly 

controlled to achieve desired differentiation. In addition, starPEG-heparin hydrogels have 

been formed by reacting activated heparin carboxyl groups with amine-functionalized 

PEG using EDC/NHS chemistry, and used to deliver TGFβ-1 for enhanced myofibroblast 

differentiation and FGF-2 and VEGF for improved HUVEC viability [56,204]. Thus, 

incorporation of heparin into controlled delivery vehicles can modulate the rate of protein 

release, and can be tuned to enhance cell behavior. Overall, these studies indicate the 

ability of heparin to modulate protein sequestration and release when integrated into 

biomaterial scaffolds for tissue engineering regeneration and repair. Still, the contribution 

of heparin materials to endogenous protein sequestration and release has remained poorly 
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understood, and more mechanistic studies should be conducted to better understand the 

potential of heparin-based materials to interact with native proteins. 

2.4.5 Biomaterial-Mediated Protein Sequestration 

 While biomaterials have been primarily used as cell scaffolds and otherwise inert 

delivery vehicles, it has recently been suggested that biomaterials themselves be used to 

manipulate the cellular microenvironment [3]. This technique could potentially be very 

effective, as it proposes to harness potent, cell-derived protein to either reduce or amplify 

cell-signaling. Overall, this technique promises to reduce cost and lessen the 

requirements for FDA approval [3], and has just begun to be explored in tissue 

engineering applications.  

 Due to their intrinsic ability to interact with protein in vivo, natural materials such 

as heparin, chondroitin sulfate, and peptide sequences have been used to modulate 

endogenously produced proteins. One common application for material-based growth 

factor sequestration is cartilage tissue engineering, where scaffolds containing 

chondroitin sulfate and heparin are often used partially as a means to sequester both 

exogenous TGFβ added to the media and endogenously produced proteins 

[38,189,190,192,194]. A recent study proved the utility of this technique. In this study, a 

heparin-based scaffold laden with chondrocytes was investigated after in vitro culture and 

in vivo subcutaneous injection to evaluate levels of TGFβ-1. In both cases, the amount of 

TGFβ-1 increased over time, suggesting that the materials were able to effectively 

sequester and concentrate at least exogenously added TGFβ-1, and possibly cell-secreted 

TGFβ-1 as well [39].  In a similar fashion, hyaluronic acid-heparin based hydrogels were 

used to present TFG-β1 to encapsulated cardiac progenitor cells, and it was found that 
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enhanced levels of angiogenic cytokines were sequestered by heparin-containing gels, 

which likely contributed to observed increases in cell function and survival [41]. In a 

slightly different tone, heparin was used to culture MSCs and prime them toward an 

osteogenic lineage, possibly by sequestering osteogenic growth factors secreted by 

neighboring osteoblasts [40]. Finally, it was shown that self-assembling peptide fibers 

with a TGF-β binding sequence resulted in enhanced cartilage repair when implanted into 

a full thickness cartilage defect in a rabbit animal model, likely due to the ability of the 

scaffold to sequester endogenous TGF-β [44].  

 While the examples above primarily point to examples in which growth factor 

function was amplified, other materials have been used to sequester and reduce protein 

effectiveness. A VEGF-binding peptide sequences integrated into PEG MPs reduced 

proliferation of human umbilical vein endothelial cell (HUVEC), likely due to 

sequestration of VEGF away from the cells [43]. In another study, a PEG-based hydrogel 

was modified with a tumor necrosis factor-α (TNFα)-binding peptide sequence in an 

attempt to protect encapsulated cells from the pro-inflammatory environment often 

encountered after hydrogel implantation. Cells encapsulated in TNFα-antagonizing 

hydrogels were unaffected by high TNFα concentrations in in vitro experiments [46], 

pointing toward the utility in engineering hydrogels to selectively decrease the 

concentration of undesirable proteins.  In a study examining kidney development in vitro, 

normal growth of kidney rudiments from E11.5 mice was increasingly inhibited as 

heparin concentrations were increased [206], suggesting that heparin sequestered 

essential proteins away from the cells in the developing tissue.  
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 Several techniques to antagonize proteins in vivo have also been carried out in 

craniosynostosis models. Craniosynostosis involves the premature closure of cranial 

sutures, and while surgical intervention can be employed to successfully separate the 

fused bones, re-fusion, or resynostosis, often occurs [207,208]. To prevent this, collagen 

gels with antibodies against proteins implicated in the bone fusion process, including 

anti-TGFβ-2 and anti-FGF-2, have been delivered to the site of the suture [209,210].  

This therapy is only partially successful due to the limited half-life of these antibodies 

[209,210], but similar approaches with more robust protein-sequestration technique may 

be beneficial for craniosynostosis and resynostosis in the future. While still a relatively 

new concept, these studies highlight the plethora of opportunities available for 

biomaterial-mediated endogenous protein sequestration, to both eliminate and prolong 

protein presentation in the cellular microenvironment. 

2.5 Microparticles 

 Microparticles (also called microspheres) are used frequently for drug and protein 

delivery [211]. Compared to larger delivery vehicles, MPs are particular advantageous 

because they are injectable and have a high surface area to volume ratio, allowing 

enhanced cargo release [211]. In general, high encapsulation efficiency and sustained 

release of bioactive molecules are the goals for MP delivery vehicles [211]. While many 

MP formulations have an unavoidable burst release of encapsulated cargo, the goal of 

most MP technologies is sustained release [211]. Often, MPs are engineered to be 

degradable to enhance release of the loaded cargo, but release is not always directly 

correlated to degradation [211]. While many different materials have been used to 

fabricate MPs, this review will focus on PEG and GAG based MPs.  
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2.5.1 Poly(ethylene-glycol) -Based Microparticles in Tissue Engineering 

 PEG is an attractive material for protein delivery because it is hydrophilic, 

relatively inert (i.e. it does not bind many proteins), and easy to chemically modify [28]. 

Traditionally, it has been integrated into hydrophobic PLA or PLGA MPs to enhance 

protein loading and release [212–216]. PEG has both been used in combination with 

PLGA, PLA, and alginate or alone to enhance MP release of hydrophobic drugs such as 

paclitaxel [214], genistein [217], and dexamethasome [218], and proteins such as 

VEGFA [219], lysozyme [213], horseradish peroxidase [218]. More recently, PEG has 

been chemically modified with peptide sequences to impart protein-binding capabilities, 

facilitate cell adhesion, or to enhance degradation. For example, 4-arm PEG norbornene 

was functionalized with a VEGF peptide binding sequence to enhance VEGF 

sequestration onto the MPs [43]. In another study, RGD (arginine-glycine-aspartic acid, 

an amino acid sequence from the fibronectin protein that promotes cell adhesion) was 

incorporated into 8-arm PEG-vinylsulfone/PEG-amine MPs to promote MSC adhesion in 

aggregate culture [220]. Finally, a MMP-sensitive sequence was integrated into a PEG-

diacrylate (DA) hydrogels to enhance cell-mediated degradation. These MPs showed a 

faster release rate of hydrophilic and hydrophobic model drugs, as well as a model 

protein, with increased collagenase concentration [218].  

 Hydrolytically degradable PEG-DA MPs have also been fabricated by taking 

advantage of the increased susceptibility to hydrolysis of the acrylate ester bond when 

covalently bound to DTT [60]. 4-arm PEG-DA MPs exhibited accelerated rates of 

degradation as levels of DTT were increased [221]. Overall, these studies show the 
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diversity of PEG-based MPs that have been used for protein loading and release and in 

other tissue engineering applications.  

2.5.2 Glycosaminoglycan-Based Microparticles in Tissue Engineering 

 In contrast to PEG, GAG based materials have the potential to bind a plethora of 

positively charged proteins. Heparin is often used in microparticles to both prolong the 

duration of growth factor release and protect growth factors from degradation, thus 

prolonging bioactivity [53,54]. Specifically, heparin-based hydrogels have been used to 

deliver FGF, BMP-2, hepatocyte growth factor, VEGF, and other proteins to enhance 

cellular behavior [53–56]. Heparin has been integrated into a variety of MP systems and 

is often coated onto a MP template via layer-by-layer techniques. For example, heparin-

poly-L-arginine microcapsules were fabricated using a layer-by-layer approach on 

calcium carbonate microspheres and used to deliver TGF-β to fibroblasts, inducing their 

transdifferentiation into myofibroblasts [222]. Heparin coatings have been applied to both 

alginate and HA MPs and loaded with BMP-2 to enhance bone formation in vivo [223] 

and MSC chondrogenesis in vitro [224,225].  

 Pure heparin MPs have also been fabricated and used for growth factor delivery. 

In one study, low MW heparin was mixed with protamine to form MPs for FGF-2 

delivery, leading to neovascularization and fibrous tissue formation when injected 

subcutaneously into mice [57]. In another study, methacrylamide-functionalized heparin 

MPs were fabricated via free radical polymerization methods and used to deliver BMP-2 

to C2C12 cells, showing comparable ALP activity to that obtained by soluble BMP-2 

delivery [59]. In a similar set of studies, 1-10% of a thiolated heparin and several heparin 

derivatives with altered sulfation patterns were incorporated into 4-arm PEG-DA MPs, 
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and BMP-2 bioactivity was preserved in heparin and the derivative with the next highest 

level of sulfation, as compared to derivatives with lower sulfation [58].  

 CS MPs have also been fabricated, with the goal of enhancing biocompatibility 

[226] or increasing loading and release capabilities [227]. Often, complex coacervation or 

chemical cross-linking of CS and another polymer, such as gelatin, chitosan, or collagen, 

is used to form CS-containing microparticles. This technique has been used to make MPs 

for release of ovalbumin, albumin, catalase, and an anti-cancer drug, 5-fluorouracil 

[226,228–230]. CS and dermatan sulfate have also been incorporated into PLGA MPs to 

enhance protein stability and to better control loading and release [227,231]. Finally pure 

CS MPs have also been employed for tissue engineering applications. Methacrylated 

chondroitin sulfate MPs were formed and able to be incorporated into embryonic stem 

cell aggregates without affecting viability [232], and produced slight upregulation of  

chondrocytic markers when incorporated into MSC aggregates [233]. Overall, GAG-

based MPs are beneficial for preservation of protein bioactivity, enhancing release 

profiles of both hydrophilic drugs and proteins, and for enhancing MP biocompatibility. 

Due to their size and shape, MPs have the capability to interact with cells directly in the 

cellular microenvironment through material-protein-cell interactions, and possibly direct 

cell-material interactions. These interactions should be harnessed to guide and study cell 

behavior in future studies.  

2.5.3 Core-Shell Microparticles 

 When using microparticles for drug and biomolecule delivery, major obstacles 

include minimizing burst release and controlling release kinetics of bioactive cargo 

[52,234–237]. In response to these challenges, core-shell microparticles have been 
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fabricated, towards the goal of prolonging release of a drug or biomolecule encapsulated 

in an inner core by manipulating the degradation prolife of an outer shell [51,52,236]. In 

general, core-shell MPs are generated via a double emulsion process or by pre-fabricating 

the inner core and coating or re-emulsifying the inner core with the shell polymer 

solution, either in a large batch process or using a microfluidic device [236,238–242]. 

Batch emulsification fabrication methods (high-shear processes like precipitation, spray-

drying, and phase separation) have the benefit of requiring little specialized equipment 

but can have low throughput and generate heterogeneous MPs; microfluidic devices 

require extensive expertise and specialized equipment but generate uniform MPs with 

high throughput [52,240,243,244]. Depending on requirements of the MP systems and 

resources available, core-shell MPs can be fabricated in a variety of ways. 

 Core-shell MP delivery systems have been traditionally employed for small 

molecule or drug delivery [234,238,240,243], but their utility in delivery of biomolecules 

to cell-based systems has just begun to be explored. As noted by several research groups, 

core-shell MPs have the potential to enable temporal control over the release of one or 

more growth factors to cells, possibly on different time-lines, which could be beneficial 

for cell differentiation processes where temporal control over protein delivery is critical 

[237,245]. For example, VEGF was encapsulated in alginate MPs and then coated with 

chitosan and polycaprolactone, which resulted in a lower burst release and longer release 

duration [52]. Core-shell MPs also have potential to enhance protein stability. In one 

example, FGF was mixed with heparin and trapped in a calcium carbonate core MP, then 

coated with dextran sulfate and poly-l-arginine. Similar proliferation of mouse fibroblasts 
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was observed when subjected to free FGF or FGF-loaded core-shell MPs, indicating that 

entrapment in the MPs preserved protein bioactivity [246].  

 Finally, dual-release of proteins and drugs has been achieved by encapsulating 

one protein or drug into the core, and another into the shell. As the core and shell material 

can have different chemical properties, this can allow for efficient encapsulation of drugs 

and proteins with different properties. One example of this is core-shell PLGA-alginate 

MPs, fabricated to achieve dual-release of VEGF and platelet-derived growth factor 

(PDGF) to HUVECs, and cells sprouted and produced capillary-like structures in 

response to biomolecule delivery [247]. Similar core-shell MPs were used to encapsulate 

BMP-2 and dexamethasone, and BM-MSCs encapsulated in the shell layer were seen to 

undergo enhanced osteogenesis as compared to controls [245]. These studies indicate that 

core-shell MPs can be used to successfully deliver proteins and other biomolecules and 

have potential to improve protein stability and better control loading and release 

dynamics.  

 In addition to drug and biomolecule delivery, MPs have also been used to 

sequester various biological agents for diagnostic tests, removal from human plasma, and 

biosensors [47–50]. Core-shell MPs are of particular interest in these processes, as the 

materials used for the core and the shell can impart distinctly different properties onto the 

MP system. For example, in several studies that have aimed to sequester biomarkers from 

bodily fluids, the outer shell is engineered to exclude large proteins, especially albumin, 

but to allow passage of smaller proteins. Then, the inner core is designed to trap smaller 

proteins once they have entered the MP matrix, effectively allowing for the capture of 
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low-concentration biomarkers from a given fluid [48–50]. The design principles used to 

engineering these MPs could be applied to multifunctional core-shell MPs in the future.  

2.5.4 Microparticles in Cell Spheroids 

 Recently, dense cell aggregates (also called spheroids or pellets) have been used 

as an alternative to monolayer cell culture, as cell aggregates are thought to better mimic 

the in vivo cellular microenvironment [248–251]. The higher cell-cell and cell-matrix 

contacts created in aggregate culture may be contributing factors to the enhanced cell 

survival, function, and differentiation observed in cells in aggregate culture 

[248,249,252]. For example, it has been well-established that chondrogenic 

differentiation of MSCs and spontaneous differentiation of embryonic stem cells (ESCs) 

is enhanced in aggregate culture [249,253]. Furthermore, unlike larger cell-seeded 

scaffolds, cell aggregates can be injected into sites of tissue injury, possibly promoting 

regeneration and repair [254]. However, aggregate culture can be problematic due to 

diffusion limitations for nutrients and oxygen [248,252,255,256]. In addition, in cases 

where delivery of exogenous growth factors is required, cells on the exterior of the 

aggregate will be exposed to that factor at a much higher level than cells on the interior, 

creating possibly undesirable spatial variance throughout the aggregate [255]. Finally, for 

injectable cell aggregate therapies, maintaining control of cell behavior within the 

aggregate after injection could be advantageous. To overcome these limitations, MPs 

have been incorporated into aggregates, both toward the goal of reducing diffusion 

limitations and to delivery soluble factors homogenously throughout the cell aggregate 

for better controlled cell behavior.  
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 A variety of materials have been used to make MPs for incorporation into cell 

aggregates, including PLGA [251,253,255,257–259], PLA [251], chitosan [251,260], 

gelatin [248,252,259–261], Sephadex (dextran) [262], polystyrene [250], heparin [263], 

agarose [259], alginate [254], and PEG [220]. For some of the initial studies that 

developed MP-containing cell aggregates, adherent cells and MPs were cultured in non-

adherent dishes or bioreactors, which promoted cell adhesion to the MP surface, and 

eventual formation of aggregates [251,262]. However, the size of these aggregates and 

the number of incorporated MPs was difficult to control, and current methods mix MPs 

and cell prior to deposition into low-binding well plates or agarose wells.  

 Several general concepts and conclusions have resulted from the numerous MP-

cell aggregate studies conducted. First, it has been observed that aggregate formation is 

dependent on the size and number of MPs used. Too many MPs or MPs that are large can 

disrupt the cell-cell contacts required for aggregate formation [252]. Incorporation of 

MPs into aggregates can affect cell behavior, even if growth factors are not delivered. For 

example, gelatin MPs have been observed to enhance chondrogenesis in MSC aggregates 

[252], which may possibly be due to (or cause) the increased stiffness observed in MSC 

aggregates containing gelatin MPs observed in a separate study [248]. Relatedly, MPs of 

similar size but composed of different materials can affect cells differently [259]. 

Additionally, when loaded with an equal amount of growth factor per MP mass, larger 

numbers of smaller MPs have more of an effect than smaller numbers of larger MPs 

[253,261], indicating that release kinetics or MP distribution throughout the matrix is 

important to consider in aggregate culture. Finally, magnetic MPs can be used to 
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assemble spheroids into larger structures, allowing for potential spatial patterning of 

discrete cellular units in future experiments [250].  

 Microparticles have often been incorporated into cell aggregates to enhance cell 

differentiation. As MSC aggregate culture is a common technique to induce chondrogenic 

differentiation, several studies have investigated the incorporation of MPs in MSC 

aggregates. Chitosan-gelatin, gelatin, PLGA, and chondroitin sulfate-based MPs have all 

been used to deliver TGFβ-1 within MSC aggregates. In general, enhanced 

chondrogenesis (as evidenced by collagen II and GAG deposition, among other markers) 

was observed in groups with MPs that delivered TGFβ-1 [256,260,261,264]. Alginate 

and 8-arm PEG-based MPs have also been functionalized with the cell-adhesive sequence 

RGD and incorporated into MSC spheroids, resulting in enhanced chondrogenesis 

without delivery of a biomolecule [220,254]. ESCs are also more likely to undergo 

differentiation in 3D, which has led to incorporation of MPs within embryoid bodies 

(EBs). Retinoic acid delivery from PLGA MPs has been shown to be more effective than 

soluble delivery, and results in cystic EB formation [253,255]. In addition, BMP-4 

delivery from heparin-gelatin MPs spatially oriented in one part of an EB showed 

localized Brachyury-T induction [263]. Several other examples of differentiation include 

gelatin MPs for osteogenic MSC differentiation [252], PLGA MPs for enhanced 

adipogenesis in the pre-adipocyte 3T3 L1 cell line [257], and nerve growth factor-loaded 

PLGA MPs for enhanced neuronal activity [258]. As a whole, these studies illustrate the 

utility of incorporating MPs in dense cell aggregates to control cellular differentiation and 

behavior. Of specific interest, the ability of protein-binding microparticles (such as those 

composed of GAGs) to sequester and release proteins within the cellular aggregate 
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microenvironment could be very beneficial to further harness the differentiation potential 

of progenitor cells for tissue regeneration and repair applications. 

2.6 Systems Biology Approaches to Tissue Engineering 

 As biological assay techniques become more high-throughput and generate large 

arrays of data, univariate analysis techniques are unable to fully elucidate interactions, 

correlations, and multi-factor responses between measured variables [265–268].  In 

addition, analyses of biological systems are most powerful if multiple cell responses are 

investigated across several timepoints and conditions [266,268,269]. Thus, multivariate 

analysis techniques have recently been implemented to gain a more comprehensive 

understanding of cell phenotype by analyzing variables as a whole, rather than 

investigating one variable at a time [265,267,268]. Several different computational 

techniques are frequently used, including clustering (hierarchical and k-means), decision 

trees, Bayesian networks, principal component analysis (PCA) and partial least-squares 

regression (PLSR) [267,268,270]. Each of these techniques allows researchers to better 

visualize interactions between the variables measured in a particular system, and of 

particular interest in this review are PCA and PLSR.   

 PCA is a technique that allows visualization of data clustering by reducing the 

dimensionality of a dataset to 2-4 dimensions, graphed on axes called principal 

components (PCs), which are able to capture the majority of the variance in the dataset 

[266,268,270]. PLSR is an extension of PCA, where an added assumption is made that a 

cell outcome measure (called “Y”; i.e. apoptosis, differentiation, migration) is dependent 

on a combination of measurable variables (called “X”; i.e. cell signaling, surface markers, 

protein phosphorylation) [266,267]. A linear regression solution is then calculated to 
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show how cell outcome is a function of measureable variables (Y=f(X)) [265–267]. This 

technique can elucidate the most important combinations of measured variables that lead 

to an observed outcome, which allows this modeling technique to be predictive in 

addition to explanatory [265–267].  

 PCA and PLSR have been applied to a variety of tissue engineering applications. 

In one study, PLSR was used to analyze hepatic cytotoxicity in response to stimulation 

by various drugs through measurement of phosphoproteins. This analysis narrowed the 

original 17 phosphoproteins down to 4 that caused the largest effect on cytotoxicity 

[271]. Several studies have investigated specific cell-type responses to TNF-α, and PLSR 

analysis has indicated that these responses are dependent on cell-type and the time after 

drug administration [272,273].  Another study showed that both surface markers and 

signaling molecules can be used to predict T-cell age by using PLSR analysis [274]. 

These techniques have also been used to evaluate stem cell behavior. In one study, PLSR 

was used to establish a relationship between embryonic stem cell gene expression profiles 

and biomechanical properties as cells were directed to ectoderm or mesoderm lineages 

[275]. In another study, PLSR was used to understand how kinase pathways govern MSC 

differentiation, and behavior could be predicted based on several phosphoproteins [276]. 

Finally, PCA and PLS-Discriminate Analysis (PLS-DA, a modified version of PLSR 

using a dummy variable to stand in for a cell response) elucidated distinct expression 

dynamics for osteogenic, adipogenic, chondrogenic, and myogenic transcriptional 

regulators when MSCs were co-cultured with adipocytes and osteoblasts [32]. Overall, 

these studies indicate that PCA and PLSR are excellent tools to evaluate and develop 

predictive models for dynamic, complex cellular systems.  
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CHAPTER 3 

INTERACTIONS BETWEEN MESENCHYMAL STEM CELLS, 

ADIPOCYTES, AND OSTEOBLASTS IN A 3D TRI-CULTURE 

MODEL OF HYPERGLYCEMIC CONDITIONS IN THE BONE 

MARROW MICROENVIRONMENT
4
 

3.1 Introduction 

Diabetes is associated with insulin deficiency (Type I) or resistance (Type II) and 

consequential dysregulation in adipose tissue and energy metabolism [74]. Notably, both 

type I and II diabetes are associated with increased risk of osteoporosis, a skeletal 

disorder characterized by low bone mass and microarchitectural deterioration of bone 

[277]. Among other cell types, adipocytes and osteoblasts are dysregulated during the 

progression of diabetes and resulting secondary osteoporosis [34]. As both cell types are 

differentiated from mesenchymal stem cells (MSCs) and are components of the bone 

marrow microenvironment [34,74,278], it is possible that the progression of these 

diseases involves altered MSC behavior [34].  

The stem cell microenvironment, where stem cells derive signals from the 

extracellular matrix (ECM), cellular contacts, and both short and long range soluble 

factors, has been seen to change in disease states and has recently gained interest as a 

potential new target for disease therapies [279,280]. Within the bone marrow 

                                                 

 

 
4
 Portion of this section were adapted from T.E. Rinker, T.M. Hammoudi, M.L. Kemp, H. Lu, J.S. 

Temenoff, Interactions between mesenchymal stem cells, adipocytes, and osteoblasts in a 3D tri-culture 

model of hyperglycemic conditions in the bone marrow microenvironment., Integr. Biol. 6 (2014) 324–37. 
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compartment, MSCs are directed to differentiate to osteoblasts or adipocytes, a process 

that is tightly regulated, partially by cellular communication between MSCs and the 

osteoblasts and adipocytes in the immediate microenvironment [34]. Irregular MSC 

behavior has been observed in abnormal environments, such as the tumor 

microenvironment, where MSCs home and potentially participate in tumor pathogenesis 

[281]. Similarly, in an in vitro model of Gaucher disease, MSCs were seen to have 

reduced proliferative capacity and may contribute to increased bone resorption [282]. As 

it has been hypothesized that alterations in the MSC microenvironment both contribute to 

and result from interactions with bone and adipose tissues [34], understanding how 

environmental changes inherent to diabetes impact these interactions may provide insight 

into the role MSCs play in the progression of diabetes and concomitant osteoporosis. 

Clinically, diabetes is often associated with hyperglycemic conditions due to the 

body’s inability to properly regulate the amounts of glucose in the blood [278]. Studies 

have shown that elevated glucose levels have negative effects on MSCs, adipocytes and 

osteoblasts, all of which are cell types that influence the MSC microenvironment. Data 

suggest that at high glucose levels, MSCs undergo increased apoptosis and senescence as 

well as lose colony forming capacity and osteogenic potential [83–86]. Adipocytes have 

demonstrated decreased insulin sensitivity, unregulated triglyceride storage, increased 

production of reactive oxygen species and pro-inflammatory cytokines, and decreased 

adiponectin secretion when cultured in high glucose conditions [87–89]. Finally, 

osteoblasts cultured in high glucose have shown reduced proliferative capacity, 

mineralization capabilities, collagen I synthesis, and expression of differentiation markers 

[90–93]. However, how these individual consequences impact cellular cross-talk between 
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all three cell types remains to be fully understood, though previous work has shown that 

intercellular communication is affected in the context of diabetes. For instance, murine 

osteoblasts in co-culture with bone marrow cells from diabetic mice undergo increased 

cell death as compared to those co-cultured with bone marrow cells from normal mice 

[283]. This indicates that MSCs derived from diabetic tissues may have an altered 

secretome, but how these changes influence interactions between MSCs and neighboring 

cell types in the bone marrow niche remains largely unexplored. Understanding how 

hyperglycemic conditions influence MSCs both directly and indirectly (through soluble 

signaling from neighboring osteoblasts and adipocytes) may provide insight into how the 

altered stem cell microenvironment contributes to tissue dysregulation, particularly in the 

development of diabetes-related osteoporosis. 

To gain such biological insight, it is necessary to use an in vitro culture system 

that permits the co-culture of multiple cell types but still allows specific cell population 

analyses. As opposed to in vivo experiments, in vitro systems can be advantageous by 

eliminating the confounding factors present in animal models and by permitting use of 

human cells. In past in vitro studies, both 2D techniques, such as transwell-based systems 

and cell patterning [284,285], and 3D techniques, involving various biomaterial-based 

scaffolds [96,286], have provided useful information about cellular interactions. 

However, in many of these systems, both separation of unique cell populations for 

analysis and retrieval of live cells for further experimentation are difficult. Therefore, this 

study demonstrates the development and implementation of a 3D tri-culture platform that 

permits individual cell type analysis [32] and on-demand retrieval and further analysis of 

live MSCs post-culture. To achieve live cell retrieval, a matrix metalloprotease (MMP)-
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degradable poly(ethylene-glycol) (PEG)-based material was included in the culture 

system. This material has been used previously to encapsulate MSCs with no decrease in 

cell viability [287–289]. With this culture system, we were able to co-culture MSCs, 

osteoblasts, and adipocytes in normal and high glucose conditions, and then analyze each 

cell type separately for gene expression, histological markers, and cell viability.  

In many in vitro studies of intercellular cross-talk, only single outcome measures 

are reported, which often does not elucidate how genes, proteins, and other measure of 

cell response interact and contribute to an observed cell behavior [267]. In recent years, 

some of these shortcomings have been addressed by developing heat-maps of gene and 

protein arrays, modeling proposed signaling networks by integrating results from many 

different experiments, and constructing multivariate statistical models [32,274,290]. In 

particular, multivariate statistical analysis techniques can provide insight into the greatest 

sources of variance in complex biological systems and can elucidate how outcome 

measures correlate with different environmental and culture conditions [291]. We have 

previously used multivariate statistical techniques to evaluate gene expression data from 

simultaneous co-culture of three cell types, showing in a proof-of-concept experiment 

that these models can provide valuable biological insight in a multicellular in vitro 

system [32]. In this study, these techniques were further utilized to gain insights into how 

neighboring cell type and environment interact to influence MSC behavior and gene 

expression in an in vitro model of hyperglycemia. Specifically, we studied cellular 

response to elevated glucose levels in three different culture configurations: monoculture 

(one cell type), co-culture (two different cell types) and tri-culture (three different cell 

types) (Figure 3.1). Cellular response was analyzed by measuring gene expression levels, 
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viability, histological markers, and MSC colony-forming potential over a seven day time 

period using both univariate and multivariate analysis approaches. 

3.2 Materials and Methods 

3.2.1 Preliminary Cell Culture 

All cell culture reagents were obtained from Mediatech unless otherwise 

specified. Primary human MSCs were obtained from Texas A&M Health Sciences Center 

and expanded in Minimal Essential Medium-Alpha (αMEM) with 16.5% fetal bovine 

serum (FBS; Hyclone), 1 g/L glucose, 2 mM L-glutamine, 1% amphotericin B, and 0.1% 

gentamicin and cultured at 37°C and 5% CO2 in a humidified incubator. Primary human 

osteoblasts (Lonza) were expanded to 4 population doublings in OGM Osteoblast Growth 

Medium (Lonza) containing 10% FBS, ascorbic acid, 50 μg/mL gentamicin, and 37 

ng/mL amphotericin B. Primary human subcutaneous pre-adipocytes (Lonza) were 

expanded to 1-2 population doublings according to the manufacturer’s protocol in PGM-

2 Basal Medium (Lonza) containing 10% FBS, 2 mM L-glutamine, 50 μg/mL 

gentamicin, and 37 ng/mL amphotericin B. Cultures at 80% confluence were 

differentiated into adipocytes for 9 days in Dulbecco’s Modified Eagle Medium (DMEM) 

with 10% FBS, 1 g/L glucose, 60 µM indomethacin, 0.5 mM 3-isobutyl-1-

methylxanthine, 0.5 µM dexamethasone, and 45 pM insulin. 

3.2.2 Fabrication of Culture System 

Cells were encapsulated in PEG-based materials (Sigma-Aldrich, unless 

otherwise noted). PEG-diacrylate (PEG-DA) (Mn = 8kDa) was synthesized by combining 

acryloyl chloride and PEG according to previous methods [148] (See Figure 3.1C for 

PEG-DA cross-linking schematic). 
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To promote cell adhesion and viability, PEG-based materials containing 

fibronectin-derived GRGDS (Bachem) and laminin-derived YIGSR (Anaspec) were 

synthesized from Acryl-PEG-succinimidyl valerate (SVA) (Mn=3.4kDa; Laysan Bio) 

according to previous methods [32,148] to obtain Acryl-PEG-RGDS and Acryl-PEG-

YIGSR. To allow on-demand degradation of particular blocks in the culture system, a 

collagenase-degradable peptide sequence, GGGLGPAGGK (abbreviated LGPA), was bi-

functionalized with Acryl-PEG-SVA (Mn=3.4kDa) according to previous methods 

[289,292] to obtain PEG-LGPA-DA polymer chains (See Figure 3.1D for PEG-LGPA-

DA cross-linking and degradation schematic). 

To fabricate cultures, cells were suspended in precursor hydrogel solutions at 

15×10
6
 cells/mL. Solutions were formulated with 10% w/w PEG-DA (osteoblasts and 

adipocytes) or PEG-LGPA-DA (MSCs) and 0.05% w/w D2959 photoinitiator (Ciba), 

with 1 mM Acryl-PEG-RGDS and Acryl-PEG-YIGSR for MSCs and adipocytes, 

respectively. Precursor hydrogel solutions were photopatterned into 1.5 × 1.5 × 1 mm 

laminated gel structures using a PDMS mold and UV light according to previous methods 

(Figure 3.1) [32]. An opaque photomask was used in subsequent steps to prevent any 

further UV light exposure and crosslinking. Each subsequent layer is laminated to the 

prior and constructs do not separate over the course of the experiment or experience 

changes in tensile properties, as demonstrated in prior work [32,287,293]. Laminated 

constructs were extracted from the device and sectioned with a scalpel perpendicular to 

the long axis of the laminate to yield up to eighteen 1.5 mm-wide mono-, co-, and tri-

culture constructs (Figure 3.1). 
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3.2.3 Culture of Encapsulated Cells 

Gel structures were cultured in individual wells of a 12 well plate in DMEM with 

10% FBS, 5.5 mM glucose (100 mg/dL, similar concentration to normal fasting serum 

glucose level in humans), 2 mM L-glutamine, 70 µM L-ascorbate, 45 pM insulin (6.4 

μU/mL, normal fasting serum insulin level), 1% amphotericin B, and 0.1% gentamicin. 

After 1 day, a subset of constructs was switched to 22.3 mM glucose (400 mg/dL, similar 

to hyperglycemic glucose level in poorly-controlled diabetic patients). All constructs 

were then cultured for a total of 7 days with an additional media change at Day 4 (Figure 

3.1). 

 

Figure 3.1. Six culture configurations were evaluated in this study. (A) Cells were 

cultured in mono-, co-, or tri-culture hydrogel constructs for up to 7 days and then 

analyzed as depicted above. After one day in culture, media was changed and half of the 
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constructs were switched to high glucose. Shades of gray and white blocks represent 

hydrogel blocks of different types of cells in either mono-, co-, or tri-culture. (B) Tri-

culture configurations consisted of adipocytes, MSCs, and osteoblasts (designated 

OMA); co-culture configurations consisted of osteoblasts and MSCs or adipocytes and 

MSCs (designated OMO and AMA, respectively); and mono-culture configurations 

consisted of osteoblasts, MSCs or adipocytes (designated OOO, MMM, and AAA, 

respectively). (C) Schematic for PEG-DA cross-linked via photoinitiated free-radical 

polymerization. (D) Schematic of PEG-LGPA-DA cross-linking and degradation via 

collagenase. 

 

3.2.4 Cell Viability and Image Analysis 

Hydrogel constructs (n = 3 for all mono-culture, co-culture, and day 1 (D1) tri-

cultures; n = 2 for day 7 (D7) tri-cultures) were analyzed on Days 1 and 7 culture using a 

LIVE/DEAD assay (Invitrogen). Constructs were rinsed in sterile phosphate buffer saline 

(PBS) at 37 °C for 30 minutes and then incubated in LIVE/DEAD dyes (1 µM calcein 

AM, 1 µM ethidium homodimer-1) for 45 minutes at 37 °C. Constructs were then rinsed 

with PBS for 15 minutes and imaged with confocal microscopy (10x objective, LSM 700; 

Zeiss). For each construct, 1 image stack was collected for each cell type present 

(dimensions: 693 × 693 μm; stack depth = 0 – 800 µm with 10-µm intervals). Image 

stacks were analyzed using ImageJ software (version 1.46a; NIH). Each stack was split 

into green (calcein) and red (EthD-1) channels. Every fifth image was analyzed for total 

number of live and dead cells. Particles of diameter greater than 94 μm
2
 and 12 μm

2
 were 

counted for the live and dead cell analysis, respectively, using the Particle Analysis 

macro. Subsequently, fraction viable cells (# live cells/# total cells counted) was 

calculated for each stack and normalized to Day 1 normal glucose conditions. 

3.2.5 Colony Forming Unit-Fibroblasts (CFU-F) Analysis 

To evaluate clonogenicity, at day 7, MSC-containing PEG-LGPA-DA hydrogel 

constructs (n = 3) were incubated in a 1,100 U/mL collagenase (Gibco) solution in MSC 
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expansion medium for 1 hour. Fractions of the media containing the recovered cells (100 

μL for MMM, 200 μL for OMO and AMA, and 300 μL for OMA; volumes determined in 

order to seed approximately the same number of cells for each construct type) were 

plated into 15-cm tissue culture dishes (Corning) containing 20 mL of MSC expansion 

medium. Media was changed 1 day after seeding and cells were then fed every 3 days for 

14 days of culture. Clonogenicity was evaluated by counting colonies > 2 mm (stained 

with 3% crystal violet (Sigma-Aldrich), 100% methanol (BDH)) after 14 days.  

3.2.6 Histological Analysis 

For histological analysis, all culture configurations under both normal and high 

glucose conditions were infiltrated by graded concentrations of sucrose in PBS followed 

by graded concentrations of optimal cutting temperature compound (OCT; Sakura 

Finetek), frozen in liquid nitrogen, and stored at -80°C until sectioning.  Embedded gel 

constructs were serially cryosectioned at a 20 µm thickness (Microm HM 560 Cryostat; 

Thermo Scientific) and mounted on Superfrost Plus slides (Fisher). Sections were stained 

either for lipids (10 µg Nile Red/mL in 1% acetone) or alkaline phosphatase (ALP) 

activity according to the manufacturer’s protocol (Vector Red Alkaline Phosphatase 

Substrate Kit; Vector Labs). In both cases, sections were counterstained with Hoechst 

33258 (0.25 mg/mL in PBS for 5 min; Molecular Probes). Sections were visualized with 

epifluorescence microscopy under FITC filters for Nile Red, Texas Red Filters for ALP, 

and DAPI filters for Hoechst.  

3.2.7 mRNA Isolation and qPCR 

Hydrogel constructs (n = 5) were rinsed in PBS and blocks containing individual 

cell populations were separated from each other using a scalpel for gene expression 
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analysis by qPCR after 1 and 7 days in mono-, co-, or tri-culture. Gel blocks containing 

the same cell type were pooled from 2 co-culture constructs or 3 tri-culture constructs of 

the same culture configuration and glucose condition to provide sufficient and equivalent 

amounts of mRNA for quantification. Pooled blocks were homogenized in 

microcentrifuge tubes with pellet grinders and mRNA was extracted using a QIAshredder 

tissue homogenizer and RNeasy kit with DNase I digestion (Qiagen).  cDNA was 

generated using SuperScript III Reverse Transcriptase (Invitrogen) with Oligo(dT)15 

primers and dNTPs (Promega). Gene expression was analyzed with quantitative PCR 

amplification performed on a StepOnePlus
TM

 Real-Time PCR System (Applied 

Biosystems) in the presence of SYBR Green/ROX master mix (Applied Biosystems). In 

addition to endogenous controls (40S ribosomal protein S18 (RPS18) and beta-actin), 

gene expression was measured for genes indicating osteogenesis (runt-related 

transcription factor 2 (RUNX2), Osteocalcin (OCN), and Osteoprotegerin (OPG)); 

adipogenesis (peroxisome proliferator-activated receptor γ (PPARγ2), CCAAT/enhancer-

binding protein beta (CEBPB), Leptin (LEP), and adiponectin (ADIPOQ)); and glucose-

responsive transcription factors (activating transcription factor 2 (ATF2), forkhead box 

protein O1 (FOX01), c-jun (JUN), and nuclear factor kappa B (NFKB1)). Sequences for 

custom-designed primers (Invitrogen) can be found in Table 3.1.  

Table 3.1 National Library of Medicine accession number and primer sequences for 

target genes in qPCR. 

Target Gene NML Accession # Sequence (Forward, Reverse) 

RUNX2 NM_001024630 
TTTGCACTGGGTCATGTGTT 

TGGCTGCATTGAAAAGACTG 

OCN NM_199173 
GTGCAGAGTCCAGCAAAGGT 

AGCAGAGCGACACCCTAGAC 

OPG NM_002546 
CGGGAAAGAAAGTGGGAGCAGAAG 

CGTCTTTGAGTGCTTTAGTGCGTG 
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Table 3.1 Continued 

PPARG2 NM_015869 
TCCATGCTGTTATGGGTGAA 

GGGAGTGGTCTTCCATTACG 

CEBPB NM_005194 
CGAGTCAGAGCCGCGCAC 

GCAGGGGGAGACATGCTGGG 

LEP NM_000230 
ACCCTGTGCGGATTCTTGTGGCTTTGG 

GGCTCTGCCTACCCCTCTGCCCT 

ADIPOQ NM_001177800 
ATCTGGTTGGGGTGGGCTCCTTAC 

GTTGACTCTCTCTGTGCCTCTGGTT 

ATF2 NM_001880 
GGTCCTTCCTCTCCCCAACCAGTA 

CTGTAGTGGATGTGGCTGGCTGT 

JUN NM_002228 
GACAGACACAGCCAGCCAGCCAG 

GGACACTCCCGAAACACCAGCCC 

FOXO1 NM_002015 
GCTACCAATAACCCCAGCCCCAA 

AATGCCAGGTTGGTCTGTTCGCA 

NFKB1 NM_003998 
AGACAAAAACTGGGCTACTCTGGCG 

TGAGAGGTGGTCTTCACTGGGCT 

RPS18 NM_022551 
CGATGGGCGGCGGAAAATAGCCTTGC 

CAGTGGTCTTGGTGTGCTGGCCTCGG 

ACTB NM_001101 
GCAGTCGGTTGGAGCGAGCATCCCC 

TCCCCTGTGTGGACTTGGGAGAGGAC 

 

To analyze PCR amplification data, the raw fluorescence data was processed 

using LinRegPCR (v12.11; http://www.hartfaalcentrum.nl). Starting amplicon number 

(No) was calculated based on mean efficiencies (E) and cycle threshold (Ct) using the 

formula No = Nt/E
Ct

, where Nt is the amplicon number at the cycle threshold. No for each 

target gene were normalized to a geometric mean of the starting amplicon numbers of the 

endogenous controls to obtain relative expression values.  

3.2.8 Univariate Statistical Analysis of Cell Viability and Colony Formation 

Viability and CFU-F results are depicted as mean ± standard deviation. Prior to 

statistical analysis, all data were transformed with a Box-Cox transformation. Where 

significant factors and interactions were identified by ANOVA, Tukey’s post hoc test 
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(significance level p < 0.05) was used to generate pairwise comparisons between means 

of individual sample groups and determine statistically significant differences. 

3.2.9 Multivariate Models of Gene Expression 

Statistical modeling was performed using SIMCA-P+ software (version 12.0.1.0, 

Umetrics) on gene expression results. All Box-Cox-transformed data were mean-centered 

and scaled to unit variance prior to analysis as a means of normalization to allow all 

variables to be considered equally scaled in the principal components or latent variables 

[291]. For PCA, N x K X-matrices were generated of N culture condition observations 

and K time-variant gene expression responses. PCA was conducted to determine the 

source of maximum variation in the dataset, resulting in clusters of similar observations 

separated across one or more principal components. Based on clustering, partial least 

squares discriminate analysis (PLS-DA) was performed to find LV that served as 

discriminating factors to best separate observations [32,294]. For PLS-DA, N x M Y-

matrices were generated of N culture condition observations and M responses, which 

were based on assigned classes (culture configuration or glucose level). To optimize 

model quality, pruning processes were performed to remove observations that lied 

outside of the 95% confidence interval and variables that were not influential in model 

generation. The overall quality of each model is summarized by two parameters: R
2
X 

(PCA) or R
2
Y (PLS-DA) provide a measure of the extent that the model explains the 

variation in data matrices and indicates a goodness of fit; and Q
2
 provides a measure of 

the extent to which the variation of a future experimental data set may be predicted by the 

model and indicates a goodness of prediction [294]. For further model quality 

assessment, model validation based on permutation testing was performed in SIMCA-P. 
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In brief, this technique randomly shuffles the positions of variables in the Y-block and 

then fits a new PLS model to the permuted Y-block. Cross-validation methods are used to 

generate R
2
Y and Q

2
 values for new models. If the R

2
Y and Q

2
 values of the new models 

are lower than R
2
Y and Q

2
, the model is valid [295].  

3.3 Results 

3.3.1 Adipocyte Response to Culture Conditions and Glucose Levels 

 Adipocytes were cultured under normal and high glucose conditions in three 

different culture configurations: mono-culture with only adipocytes (AAA), co-culture 

with MSCs (AMA), or tri-culture with MSCs and osteoblasts (OMA), where the 

underlined letter represents the cell type being discussed from a particular culture 

configuration (Figure 3.1). Lipid deposition was observed using Nile Red staining at all 

time-points and experimental conditions (Figure 3.2A). Lipid deposition was constant 

throughout the duration of culture and no changes in lipid deposits were observed 

regardless of time, glucose level, or culture configuration (data not shown). 

Expression levels for a variety of genes that act as markers of adipogenesis and 

energy metabolism (Table 3.1) were measured for each condition using qPCR. Using this 

data, Principal Component Analysis (PCA) was conducted to model adipocyte gene 

expression data that included all experimental conditions (Figure E.1A, Appendix E). 

Based on observed clustering patterns in PCA, Partial Least Squares Discriminate 

Analysis (PLS-DA) was used to build a model for adipocytes assigned to classes by 

culture configuration (Figure 3.2B). The PLS-DA model yielded two latent variables 

(LV) that discriminate adipocytes by culture configuration (R
2
Y=0.93 and Q

2
= 0.92). The 

first LV discriminates OMA (or osteoblast-containing cultures) from AAA and AMA (or 
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non-osteoblast-containing cultures). The second LV discriminates AMA from AAA. The 

weight plot showed significant correlation of osteocalcin (OCN), leptin (LEP), 

adiponectin (ADIPOQ), and ATF2 with OMA cultures; peroxisome proliferator-activated 

receptor γ (PPARγ2), ADIPOQ, and osteoprotegrin (OPG) with AMA cultures; and JUN, 

NFKB1, CEBPB, and RUNX2 with AAA cultures. Then, the dataset was further divided 

and sub-models of gene expression data from AAA, AMA, and OMA cultures were used 

in PCA (Figure E.1B, Appendix E). In the case of the AAA culture configuration, 

observations clustered by glucose level and classes assigned by normal and high glucose 

levels were further discriminated using PLS-DA (Figure 3.2C; Figure E.1C, Appendix 

E).  

 

Figure 3.2. Adipocytes were assessed for response to culture conditions. (A) 

Representative images of adipocytes stained with Nile Red, specific for lipids (green) and 
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counterstained with Hoechst, specific for nuclei (blue).  (B) PLS-DA was used to build 

models for adipocytes assigned to classes by culture configuration. Models yielded two 

latent variables that discriminated adipocytes by culture configuration (R
2
Y=0.93 and Q

2
= 

0.92).  (C) For AAA culture, classes based on normal and high glucose levels were 

discriminated using PLS-DA (AAA: R
2
Y= 0.79 and Q

2
= 0.70). The corresponding weight 

plot can be found in the supplementary information (Figure E.1C). In all models, dashed 

lines represent the 95% confidence limit of the distribution of weights. 

 

Confocal microscopy was used to image hydrogel blocks of adipocytes stained 

with LIVE/DEAD reagents in each culture condition at each time point (representative 

images in Figure E.2A, Appendix E). Numbers of live and dead cells were quantified and 

the fraction of viable cells is reported normalized to day 1, normal glucose (Figure 3.3). 

Adipocytes maintained viability across the entire experiment, and no statistically 

significant differences were observed within each culture configuration.  

 

Figure 3.3. Viability of adipocytes was assessed in each culture configuration at normal 

and high glucose levels. Fraction viable cells (via LIVE/DEAD staining) for each culture 

condition is presented (n = 3 for AAA, AMA; n >2 for OMA; no statistically significant 

differences were seen, p < 0.05). 

 

3.3.2 Osteoblast Response to Culture Conditions and Glucose Levels 

Osteoblasts were cultured under normal and high glucose conditions in three 

different culture configurations:  mono-culture (OOO), co-culture with MSCs (OMO), or 

tri-culture with MSCs and adipocytes (OMA) (Figure 3.1). Alkaline phosphatase (ALP) 
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activity was evaluated using ALP substrate stain in all experimental conditions across all 

time points. Similar levels of production were seen for normal and high glucose 

conditions (data not shown) and representative images from each culture configuration at 

both time points are presented (Figure 3.4A). Low production was seen throughout the 

duration of the culture and a transiently higher amount of ALP production was seen in 

osteoblasts from OMA cultures at day 1 (Figure 3.4A). 

Expression levels for a variety of genes that act as markers of osteogenesis and 

energy metabolism (Table 3.1) were measured for each condition using qPCR. Using this 

data, PCA was conducted to model osteoblast gene expression data that included all 

experimental conditions (Figure 3.4B). The PCA yielded two principal components 

(R
2
X= 0.81 and Q

2
= 0.56). The first component indicates presence of random variance 

that can be attributed neither to culture configuration nor to glucose condition, possibly 

due to the genes measured in the experiment. However, the second component separates 

OMA cultures from OOO and OMO cultures. Further, three separate PCA models were 

built within each osteoblast culture configuration (Figure E.3A, Appendix E). In cases 

that the majority of observations clustered by glucose level in PCA (OOO and OMA 

cultures), classes based on normal and high glucose levels were further discriminated 

using PLS-DA (Figure 3.4C; Figure E.3B, Appendix E). Notably, a different set of genes 

served to separate glucose classes in OOO and OMA cultures configurations. PCA for 

osteoblasts in the OMO culture configuration indicated that primary variance in gene 

expression was not due to glucose level and did not warrant further discrimination using 

PLS-DA (Figure E.3A, Appendix E). 
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Figure 3.4. Osteoblasts were assessed for response to culture conditions. (A) 

Representative images of osteoblasts stained for ALP, a marker of osteogenic 

differentiation (red), and counterstained with Hoechst for nuclei (blue). Noticeably higher 

amount of ALP production was seen in osteoblasts from OMA cultures at day 1.  (B) 

PCA was applied to the gene expression data of the global osteoblast population, yielding 
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two principal components (R
2
X= 0.81 and Q

2
= 0.56). (C) For OOO and OMA cultures, 

classes based on normal and high glucose levels were discriminated using PLS-DA 

(OOO: R
2
Y= 0.5 and Q

2
= 0.43; OMA: R

2
Y=0.62 and Q

2
= 0.55). The corresponding 

weight plots can be found in the supplementary information (Figure E.3B). In all models, 

dashed lines represent the 95% confidence limit of the distribution of scores. 

 

Numbers of live and dead osteoblasts were quantified from confocal microscope 

images, as described above (Figure E.2B, Appendix E). Viability decreased for both 

OOO and OMA cultures in normal glucose at Day 7, while viability was maintained in 

the OMO cultures (Figure 3.5).  

 

Figure 3.5. Osteoblast viability was measured in response to culture conditions. Fraction 

viable cells (via LIVE/DEAD staining) for each culture condition is presented (n = 3 for 

OOO, OMO; n >2 for OMA;* = Significantly different from same culture configuration 

and glucose condition on Day 1; p < 0.05). 

 

3.3.3 MSC Response to Culture Conditions and Glucose Levels  

MSCs were cultured under normal and high glucose conditions in four different 

culture configurations:  mono-culture (MMM), co-culture with osteoblasts (OMO), co-

culture with adipocytes (AMA), or tri-culture with osteoblasts and adipocytes (OMA) 

(Figure 3.1). Expression levels for a variety of genes that act as markers of osteogenesis, 

adipogenesis, and energy metabolism (Table 3.1) were measured for each condition using 
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qPCR. Using this data, PCA was conducted to build a model of MSC gene expression 

data that included all experimental conditions (Figure E.4, Appendix E). Based on 

observed clustering patterns, a PLS-DA model was built for MSCs assigned to classes by 

culture configuration (Figure 3.6). Models yielded three LV that discriminated MSCs by 

culture configuration (R
2
Y=0.73 and Q

2
= 0.63). The first LV discriminates MMM and 

AMA, the second discriminates MMM and OMA, and the third discriminates OMA and 

OMO. Then, four separate PCA models were built for each MSC culture configuration 

(Figure E.5, Appendix E). In the cases of OMO and AMA, observations clustered by 

glucose level in PCA and classes based on normal and high glucose levels were further 

discriminated using PLS-DA (Figure E.6, Appendix E). Similarly to osteoblast cultures 

that could be discriminated by glucose level, a different set of genes acted to separate 

MSCs by glucose level in OMO culture configurations as compared to AMA culture 

configurations.  
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Figure 3.6. MSCs were assessed for gene expression changes response to culture 

conditions. PLS-DA models were constructed for MSCs assigned to classes by culture 

configuration. Models yielded three latent variables that discriminated MSCs by culture 

configuration (R
2
Y=0.73 and Q

2
= 0.63). In all models, dashed lines represent the 95% 

confidence limit of the distribution of weights. 

 

After 7 days of culture in normal and high glucose conditions, the degradable 

MSC block in each culture configuration was exposed to collagenase and degraded. Live 

cells were recovered and colony forming ability was assessed after 14 days of growth 

(Figure 3.7A). Significantly fewer colonies were seen in MMM and OMO cultures in 

high glucose conditions as compared to normal glucose, but number of colonies were 

similar regardless of glucose level in in AMA and OMA cultures.  
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Numbers of live and dead MSCs were quantified from confocal microscope 

images, as described above (Figure E.2C, Appendix E). Decreases in viability were seen 

for MSCs in both high and normal glucose MMM cultures at Day 7 and also in normal 

glucose OMO cultures at Day 7 (Figure 3.7B).   

 

Figure 3.7. MSC clonogenicity was measured post-culture using colony forming assays 

(A) Number of colony-forming units greater than 2 mm in diameter per dish (n = 3) (* = 

Significantly different from same culture configuration; p < 0.05). (B) MSC viability was 

measured in response to culture conditions. Fraction viable cells (via LIVE/DEAD 

staining) for each culture condition is presented (n = 3 for MMM, OMO, AMA; n >2 for 

OMA; * = Significantly different from same culture configuration and glucose condition 

on Day 1; p < 0.05). 

 

3.4 Discussion 

As stem cell microenvironments have been observed to undergo changes that 

affect resident stem cells in disease states [281], the correlation between diabetes and 
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osteoporosis may be better explained by understanding the MSC response to the 

environmental changes inherent to diabetes. Thus, we were interested to characterize how 

MSCs are affected by soluble factors secreted by osteoblasts and adipocytes in 

hyperglycemic conditions. As experimental models available to date have not been 

satisfactory in addressing this technical need, we expanded upon a model system of the 

MSC microenvironment previously developed in our laboratory to include a degradable 

polymer for live-cell retrieval [32,287]. In this model system, we focused on decoupling 

the effects of paracrine signals from other types of signaling that may occur in the bone 

marrow niche.  Within the bone marrow microenvironment, information is thought to be 

transmitted over relatively short length scales (on the order of hundreds of microns) given 

the well-defined, compact architecture [296,297], we believe the geometry of our tri-

culture system sufficiently mimics this aspect of the structure of the bone marrow while 

allowing for separation of cell types post-culture.  From this system, we analyzed gene 

expression, histological markers, cell viability, and MSC colony forming ability after 7 

days of culture in normal or high glucose conditions.     

3.4.1 Encapsulated Cells Maintain Viability and Phenotype 

Previous experiments provided evidence that our culture platform was suitable for 

at least 18 days of culture [32]. In the experiments presented here, cell viability was 

generally maintained for the duration of the experiment in all cell types (Figure 3.3, 3.5, 

and 3.7B). However, osteoblasts in OOO and OMA culture configurations under normal 

glucose conditions exhibited significantly lower viability by day 7. The decreased 

viability observed in the mono- and tri-culture conditions remains unclear, but is possibly 

due to interactions with neighboring cell types.  MSCs may have promoted osteoblast 
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viability in the co-culture, but these effects could have been interrupted by the presence 

of adipoctyes in the tri-culture.  Clinically, osteoblast turnover is thought to occur on the 

order of days [298], suggesting that osteoblasts need constant replenishment from the 

stem cell compartment. While soluble signals from stem cells are present in this system, 

direct replenishment via differentiation is impossible. Thus, the maintenance of viability 

observed in OMO cultures might be a result of communication with MSCs that 

encouraged osteoblast survival. Further refinement of our culture platform could improve 

osteoblast viability by including more soluble signals known to contribute to normal 

osteoblast function in vivo. 

Osteoblast production of ALP, a marker for osteogenic phenotype, persisted at 

generally low levels throughout the duration of culture time (Figure 3.4A). Similarly, 

adipocyte lipid deposition was evident in adipocytes throughout the duration of culture in 

all experimental conditions (Figure 3.2A). Taken together, the maintenance of viability 

and cell type-specific markers indicate that the culture system is a valid platform for 

analysis of interactions between these three cell types, even under hyperglycemic 

conditions.  

3.4.2 Multivariate Models Allow Discrimination by Neighboring Cell Type and 

Glucose Level  

Multivariate statistical modeling was used to better understand maximum sources 

of variance within the gene expression of each cell type as well as to inform future co-

culture experimental design. In global multivariate models for all cell types, the 

maximum source of variance originated from differences in neighboring cell types, 

referred to as culture configuration (i.e. mono-, co-, or tri-culture), as determined by 
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clustering patterns and discrimination across principal components and latent variables 

(Figure 3.2B, 3.4B, and 3.6). In adipocyte global models, the first LV discriminated 

osteoblast containing cultures from non-osteoblast containing cultures. From this, we 

know that the presence of osteoblasts influences adipocyte behavior, an important 

consideration in designing future co-culture studies that aim to understand adipocyte 

behavior within the bone marrow microenvironment. Osteoblast models showed less 

distinct clustering patterns, possibly indicating a large amount of random variance in the 

system. Alternatively, these results may be indicative of osteoblast stability regardless of 

neighboring cell type. Overall, future co-culture experiments may need to analyze 

different genes or other output measures to gain a better understanding osteoblast 

behavior. Finally, MSC global models discriminated each culture type from the other 

except for MMM and OMO culture configurations. This suggests that interactions with 

adipocytes significantly influence MSCs, as was evident in other analyses and will be 

discussed further. As osteoblast presence did not seem to impact MSCs as strongly, at 

least based on gene expression data, future co-culture studies could aim to gain a deeper 

understanding of MSC and adipocyte communication and the mechanisms in which this 

communication influences MSC behavior.  

Clustering by glucose level was not often observed in global models, indicating 

that neighboring cell types had a greater influence on gene expression than glucose 

conditions. However, this may have been partially due to the genes analyzed in this 

study, and by including more genes, discrimination by glucose in global models may 

have been possible.  When sub-groups of the dataset were modeled to understand primary 

variance within each culture configuration, it was found that in several cases 
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discrimination by glucose level could be achieved (Figure 3.2C and 3.4C; Figure E.6, 

Appendix E). In other cases, it was more difficult to definitively determine if culture 

configurations could be separated by glucose level, and whether this is due to the choice 

of genes analyzed or the influence of the culture configuration on cellular response to 

glucose remains unclear. Overall, it was evident that the response of individual cell type 

to glucose level was unique to each culture configuration and thus interactions with 

neighboring cell types. This provides further incentive to probe cellular response to 

pathological conditions within a co-culture setting, as it better represents the 

simultaneous cell response to neighbors and environment that occurs in vivo. 

The fact that correlations in the multivariate models were seen primarily based on 

type of neighboring cells strongly supports the idea that traditional monoculture 

platforms are not able to mimic/reproduce important features of systems-level cell-cell 

communication that occurs in disease states. Other indirect (no cell-cell contact) co-

culture studies with bone marrow cells also report that cellular behavior changes when in 

communication with other orthopaedic-derived cells. Increased osteoblast death has been 

observed in response to diabetic bone marrow cells [283] and reduced MSC hypertrophy 

and mineralization was achieved when in co-culture with chondrocytes [299]. These 

studies and the work presented here provide strong motivation to include multiple cell 

types in in vitro studies of the bone marrow microenvironment in order to gain more 

relevant biological insights for diseases affecting the entire tissue. Thus, our culture 

platform provides a novel technology that is well-suited for future studies in which 

multiple co-cultured cell types responding both to each other and to environmental 

changes may be required to adequately recapitulate a complex in vivo disease state.  
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3.4.3 Adipocyte Co- and Tri-culture Conditions Correlate with Genes Related to 

Energy Metabolism and Adipogenesis 

Multivariate models were also used to understand the correlations between gene 

expression and culture configuration. In the adipocyte-only model, markers of 

adipogenesis and energy metabolism (OCN, LEP, ADIPOQ, PPARγ2, OPG) showed 

statistically significant correlation with AMA and OMA  cultures while markers of 

inflammation and oxidative stress (JUN, NFKB1, CEBPB) showed correlation with AAA 

cultures (Figure 3.2B). This suggests that presence of MSCs may promote adipocytes to 

up-regulate genes related to adipogenesis and energy metabolism.  Interestingly, these 

differences in gene expression did not manifest in adipocyte viability data or levels of 

lipid deposition, as both were constant in all conditions (Figure 3.2A and 3.3). It is 

possible that adipocytes were robust to environmental changes, or that gene expression 

data provided an early view of adipocyte response to neighboring cells that may manifest 

in viability differences or changes in lipid at a later time. These results are consistent with 

experiments that have been done previously, in which adipocytes have been observed to 

secrete markers of inflammation and to undergo hypertrophy rather than apoptosis under 

hyperglycemic conditions [300]. Overall, these results indicate the presence of cross-talk 

between adipocytes and MSCs, which was further confirmed in additional studies 

discussed below. 

3.4.4 MSCs Modulate Osteoblast Response to Glucose 

Cell viability and MSC clonogenicity studies suggested that MSCs exert 

modulatory effects on osteoblasts at the expense of their own viability and clonogenicity, 

trends that were not seen when MSCs were co-cultured with adipocytes. MSCs in OMO 
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and MMM cultures demonstrated decreased viability and clonogenicity after 7 days of 

culture, while both viability and clonogenicity were maintained in AMA and OMA 

cultures (Figure 3.7). Similar to MSCs in OMO and MMM cultures, previous work has 

also shown reduction of MSC clonogenicity and viability under hyperglycemic 

conditions [86]. Osteoblast viability, on the other hand, was unlike that of MSCs, as only 

osteoblasts in the OMO cultures showed constant cell viability for the duration of culture 

(Figure 3.5), whereas MSCs from OMO cultures showed decreased viability over time in 

high glucose conditions (Figure 3.7B). These opposing trends were also seen in gene 

expression data, where MSCs from OMO cultures were seen to cluster by glucose level 

in the global multivariate model and culture configuration sub-model (Figure 3.6; Figure 

E.6, Appendix E) while osteoblasts from  the OMO culture configuration could not be 

discriminated by glucose level (Figure E.3A, Appendix E). This complementing 

relationship may indicate that MSCs somehow act to modulate the response of 

osteoblasts to glucose in a way that changed their own behavior. As MSCs are known to 

secrete therapeutic soluble factors [301]. This work further suggests that the secretion of 

soluble factors in hyperglycemic conditions may have had positive effects on osteoblasts 

but was detrimental to some MSC functions. However, this does not appear to be a 

universal consequence of MSC co-cultured with differentiated cells, as these detrimental 

effects were not seen in MSCs cultured with adipocytes in any configuration, discussed 

below. 
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3.4.5 Adipocytes Promote MSC Viability and Clonogenicity and Early Osteoblast 

ALP Activity 

Unlike MSCs in monoculture or co-culture with osteoblasts, MSCs in co-culture 

with adipocytes showed maintenance of viability and clonogenicity in high glucose 

conditions. Changes in adipocyte gene expression in the presence of MSCs also provides 

evidence that interactions between MSCs and adipocytes occurred, possibly due to an 

increase in expression of LEP and ADPIQ by adipocytes , which  is known to act upon 

other cell types [300]. Furthermore, it appears that adipocytes also modulated osteoblast 

behavior, especially in regards to ALP production (Figure 3.4A).  As ALP is a marker for 

osteogenesis, higher levels in osteoblasts co-cultured with adipocytes after one day may 

indicate that interactions with adipocytes promoted their activity, although high ALP 

staining was not observed by day 7 for any sample types. Thus, it appears that adipocytes 

may “buffer” MSCs from the reduction of clonogenicity and viability induced by 

hyperglycemic conditions. Analyzing these results alongside gene expression data, the 

ability of adipocytes to influence other cell types may correlate with upregulation of 

genes for adipogenesis and energy metabolism in adipocytes.   

The idea that adipocytes may act to modulate MSC response to glucose has not, to 

our knowledge, been reported in other experiments. It is well known that adipocytes and 

osteoblasts co-exist in the bone marrow microenvironment, and that the ratio of 

adipocytes to osteoblasts increases with age [74,78]. It also has been observed that an 

increase of adipocytes in the marrow coincides with the onset of disease like osteoporosis 

and anorexia nervosa, but the direct impact of higher numbers of adipocytes on disease 

progression has yet to be determined [74,302]. It has been hypothesized that increased 
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marrow fat may be a compensatory mechanism in times of disease [302], or be a direct 

cause of reduced MSC osteoblastogenesis [302,303]. Our results suggest it is possible 

that, under hyperglycemic conditions, an increased number of adipocytes in the bone 

marrow may exert compensatory mechanisms to maintain MSC function and possibly 

delay the onset of osteoporosis. Thus, our system provides important insight into a 

complex biological system that has not been achieved through other mono- and co-

culture experiments and highlights the interconnected nature of these three cell types in 

pathological conditions.  

3.5 Conclusion 

As a whole, the study presented illustrates a platform that facilitated elucidation 

of non-intuitive cellular behavior in a model of hyperglycemia. This tri-culture platform 

permitted the study of reciprocal cellular interactions, often impossible in other in vitro 

culture systems. Specifically, the tri-culture allows simultaneous analysis of cellular 

response to both pathological conditions and neighboring cell types. Also unique to our 

culture platform is the ability for on-demand retrieval of live cells, allowing for further 

analysis of individual cell response to their environment. In our model of the 

hyperglycemic bone marrow microenvironment, it was observed that neighboring cell 

type was the primary source of variance in our system and that disease-relevant 

environmental alterations can best be understood within the context of multi-cell systems. 

It was also found that while MSC clonogenicity and viability decreased when in culture 

with osteoblasts, both were maintained when in culture with adipocytes, regardless of the 

presence of osteoblasts. One possible explanation for this can be derived from adipocyte 

gene expression data, which indicates that cross-talk between adipocytes and MSCs 
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resulted in an altered reaction to high glucose levels, at least at early stages of 

hyperglycemia.  

These results provide specific avenues of study that can follow. Further studies to 

understand mechanistic reasons for why MSC viability and colony forming ability is 

decreased in the presence of osteoblasts but not adipocytes could inform future therapies 

aimed to target diseases like osteoporosis. Also, as increased marrow adipocyte levels 

coincide with osteoporosis [74], it would be interesting to further investigate if the 

relative quantities of osteoblasts and adipocytes change MSC response to culture 

conditions. The culture system described here could be used to investigate these 

questions and to generate further hypotheses that could be studied in vivo. Overall, the 

technological innovations in our in vitro tri-culture platform permitted a deeper 

understating of cellular response to hyperglycemic conditions that may be used to direct 

future research into cell-based therapies for diabetes and its secondary pathologies. 

After employing hydrogels to interrogate cell behavior, we were interested in 

using hydrogels to modulate cell behavior. However, to understand how our hydrogel-

based materials affected cell behavior, a defined cell system was required. Thus, we 

transitioned away from the MSC, osteoblast, and adipocyte co-culture model and began 

using a well-defined model system of cellular differentiation to modulate cell behavior 

with heparin-based materials.  
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CHAPTER 4 

HEPARIN MPS TO MODULATE CELL DIFFERENTIATION IN AN 

IN VITRO MODEL SYSTEM OF ENDOCHONDRAL 

OSSIFICATION 

4.1 Introduction 

 Heparin is a highly sulfated GAG known to bind a variety of proteins involved in 

cellular differentiation, including BMPs, IHH, FGFs, Wnts, and TGFβs [25]. While 

heparin has often been used in controlled-delivery vehicles for enhanced protein affinity 

[53], recent studies have also shown its utility in sequestering cell-secreted protein for 

subsequent analysis or to modulate cell differentiation. For example, heparin cross-linked 

into hydrogels has been shown to enhance cardiac progenitor cell differentiation, 

osteogenesis, and chondrogenesis, and while the mechanism is still unknown, evidence 

points toward endogenous protein sequestration [38,40,41,198]. For example, in heparin 

hydrogels seeded with MSCs in co-culture with osteoblasts, enhanced markers for 

osteogenesis were observed in MSCs as heparin content increased, possibly due to 

increased growth factor sequestration [40]. In addition, hyaluronic acid and heparin-based 

hydrogels were degraded after acting as a scaffold for cardiac progenitor cells, and 

analysis of released proteins revealed higher concentrations of cell-secreted angiogenic 

factors in heparin-containing gels, which likely contributed to enhanced neovascular 

differentiation [41]. These studies indicate the ability of heparin to sequester endogenous 

protein to modulate differentiation, which could eliminate the need to deliver 

recombinant proteins in tissue regeneration applications [3]. Still, little is known about 
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the ability of heparin alone to modulate differentiation processes, especially in a 

temporally controlled manner. Thus, in this work, the ability of heparin to modulate 

differentiation in an in vitro model system of endochondral ossification was investigated.  

Endochondral ossification is the process by which cartilage is converted into bone 

during skeletal development in vertebrates [23,106]. In this process, mesenchymal cells 

condense and differentiate into proliferative chondrocytes [23,106]. Eventually, these 

chondrocytes undergo hypertrophy and apoptosis, at which point they direct 

vascularization, mineralization, and osteoblast invasion of the tissue, converting the 

cartilage analgen into bone [23,106]. This process is tightly regulated by both systemic 

and local signaling by proteins such as FGFs, BMPs, TGFβs, IHH, PTHrP, Wnts, and 

IGFs [23,107,186]. In the growth plate, endochondral ossification continues through 

puberty and is required for normal bone elongation and growth [23,106]. Unfortunately, 

bone fractures that affect the growth plate can interrupt this process, and depending upon 

the severity of the injury, can result in limb length disparities, angular deformations in the 

bone, and possibly growth arrest in the limb [111,112]. Recently, tissue engineering 

strategies have been investigated to facilitate regeneration of the growth plate cartilage 

tissue using cell-seeded scaffolds, but only limited success has been observed [111,113–

118]. Because heparin is known to bind a variety of proteins implicated in endochondral 

ossification, it is possible that heparin materials could be used to modulate the 

differentiation process through cell-secreted protein sequestration. In the future, such a 

technique could be employed to modulate the timing of endochondral ossification and 

possibly improve growth plate cartilage regeneration strategies.  
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  The chondrogenic ATDC5 cell line was employed as a model cell system for 

these studies. Derived from the murine teratocarcinoma stem cell line AT805, ATDC5 

cells are known to undergo the stages of endochondral ossification in vitro [304–307]. In 

the presence of insulin and often β-glycerophosphate and ascorbic acid, these cells show 

increases in gene expression for such as collagen II, aggrecan, BMPs, FGFs, IHH, and 

Pthr1; staining for GAGs, collagen II, and aggrecan in the cell matrix; and production of 

proteins such as BMP-2 and TGF-β1 within 10-20 days of monolayer culture 

[304,305,308–313]. Thus, in these studies the ATDC5 cell line was chosen to enable 

large-scale experiments to investigate the effect of heparin MPs on endochondral 

ossification in a reproducible manner.  

 Often, in vitro models of cellular differentiation are carried out in pellet culture 

[36]. Dense cell aggregates better mimic the in vivo cellular microenvironment of 

cartilage and bone tissue, as aggregates provide extensive opportunity for cell-cell and 

cell-matrix interactions  [36,314]. One challenge to using cell aggregates is diffusion 

limitations of soluble factors through the dense cell matrix [315,316]. To overcome this 

challenge, protein loaded microparticles have recently been incorporated into cell 

aggregates to achieve more uniform protein delivery [256,258,260,261,263,264,317]. 

Using a similar argument, sequestration of cell-secreted proteins must occur uniformly 

throughout the aggregate. Therefore in these studies, heparin was incorporated into 

ATDC5 cell aggregates in microparticle format to ensure uniform sequestration of cell-

secreted proteins. Besides being advantageous for incorporation into cell aggregates, MPs 

are also advantageous over bulk hydrogels due to their high surface area to volume ratio, 

which improves protein binding and release [211]. Previously, heparin MPs were 
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fabricated and shown to have a high binding capacity for BMP-2 [59], suggesting that 

heparin MPs will have the ability to sequester large quantities of protein in ATDC5 cell 

aggregate culture. 

Herein, we present a model system using ATDC5 cells upon which to test the 

ability of heparin MPs to modulate cellular differentiation, specifically endochondral 

ossification, via sequestration of soluble factors. Heparin or PEG MPs, a low-binding 

material control, were incorporated into ATDC5 cell aggregates (spheroids) to evaluate 

the effect of heparin MPs on differentiation. Cell spheroids were cultured for 18 days and 

then assessed for viability, general morphology, GAG deposition, collagen deposition, 

and gene expression markers for chondrogenesis and hypertrophy. In addition, ATDC5 

cells were cultured in monolayer transwell culture with heparin or PEG MPs to evaluate 

the mechanism of action behind heparin MP mediated changes in differentiation. Finally, 

growth factor sequestration studies were conducted to better understanding heparin MP 

protein binding. Overall, these studies indicate that heparin MPs can modulate cell 

differentiation, likely through the sequestration of soluble protein.  

4.2 Materials and Methods 

4.2.1 Material Synthesis 

Heparin was functionalized with methacrylamide according to previous methods 

[40]. Briefly, the reaction was carried out in a phosphate buffer of pH 5 with 20 mg/mL 

heparin, 83 mM N-Hydroxysulfosuccinimide sodium salt (Sigma-Aldrich),  100 mM N-

(3-aminopropyl) methacrylamide hydrochloride (Polysciences), and 78 mM (N-3-

Dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC) (Sigma-Alrich) for 2 
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hours on ice. An additional round of EDC was added, resulting in a final molarity of 156 

mM. After 4 more hours, solution was dialyzed for 2-3 days and lyophilized. PEG-

diacrylate (PEG-DA) (MW=8 and 3.4 kDa) was synthesized by combining acryloyl 

chloride (Sigma-Aldrich) and PEG (Sigma-Aldrich) according to previous methods 

[148]. All polymers were stored at -20°C prior to use. 

4.2.2 Microparticle Fabrication and Protein Pull-Down Studies 

Heparin methacrylamide MPs were formed according to previous methods [59]. 

Briefly, an aqueous phase of 10% heparin methacrylamide (wt%), 18 mM ammonium 

persulfate (Sigma-Alrich), and 18 mM N,N,N′,N′-Tetramethylethylenediamine (Sigma) 

was emulsified against corn oil with 1.67% (v/v) Tween-20 (polysorbate 20; BDH) at a 

1:120 ratio aqueous:oil phase. MPs were cross-linked under nitrogen purge at 60°C for 

30 minutes (see Figure 4.1A for cross-linked structure), then washed with acetone and 

water. PEG MPs for spheroid studies and BMP-2 pull-down studies were fabricated via 

water-in-water emulsion between a 1:4 PEG-DA-rich phase (150 mg/mL 8 kDa PEG-

DA, 2 mg/mL Poly-L-Lysine (PLL) (Sigma-Aldrich), 0.05% (w/v) Irgacure D2959 in 

PBS) to dextran phase (50% (w/v) 70 kDa dextran (Sigma-Alrich), 2 mg/mL (PLL) in 

PBS). Vortexing (30 seconds) was used to form an emulsion between the two phases and 

the resulting emulsion was ultrasonicated at 21 mW energy for 1 minute to reduce 

particle size. Then, the emulsion cross-linked under UV light at an intensity of 17 mW/m
2
 

and washed twice in PBS buffer pH 7.4 containing 1% Pluronic F127 (Sigma-Aldrich). 

PEG MPs for transwell and media sequestration studies were fabricated by homogenizing 

an aqueous phase containing 16 wt% PEG-DA (3.4 kDa), 0.05 wt% Irgacure 2959 

Photoinitiator (Ciba), and 2 mg/mL poly-l-lysine (PLL, Sigma-Aldrich) against a mineral 
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oil phase (light, white; Ameresco) with 1.3% (v/v) Span-80 (sorbitan monooleate; TCI) at 

a 1:16.7 ratio aqueous:oil phase. MPs were then nitrogen purged for 1 minute, cross-

linked under UV light (approximately 10.5 mW/cm
2
) in a 35x10 mm petri dish for 10 

minutes, and washed in water.  

MPs were sized using phase microscopy images and ImageJ. For BMP-2 

sequestration studies, 0.1 mg heparin and PEG MPs were incubated with 0.1 µg BMP-2 

overnight in 0.5 mL 0.1% BSA in PBS. Concentration of BMP-2 was assessed by ELISA 

(R&D Systems). For cell studies, MPs were sterilized by incubating in 70% ethanol for 

30 minutes followed by three 30 minute PBS washes. 

4.2.3 ATDC5 Cell Culture, Spheroid Culture, and Transwell Culture 

ATDC5 cells were expanded in maintenance media (DMEM/F-12 with L-

glutamine (Life Technologies), 5% FBS (Atlanta biologics), 100 IU Penicillin 

(Mediatech), 100 ug/mL Streptomycin (Mediatech), 0.25ug/mL Amphotericin B1 

(Mediatech), 30 nM Sodium Selenite (Sigma-Alrich), and 10 µg/mL transferrin (Life 

Technologies)) and experiments were conducted mineralization media (maintenance 

media plus 10 µg/mL insulin (Sigma-Alrich), 10 mM sodium β-glycerophosphate 

pentahydrate (Alfa Aesar), and 50 µg/mL L-ascorbic acid-2-phosphate 

sequimmagnesium salt hydrate (Sigma-Aldrich)). For spheroid studies, cells and MPs 

were combined at a 3:1 and 1:3 MP cell ratio and spheroids were formed via forced 

aggregation of the cell-MP solution into 400 µm agarose wells (Figure 4.2A). After about 

18 hours, spheroids were removed from agarose wells with a wide-bore pipette tip and 

placed in non-stick dishes (6000 spheroids/plate; BD Biosciences, 10 cm diameter) on 
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rotary culture at 65 RPM. Media was changed every 3 days. For transwell studies, 

ATDC5 cells were plated at a 6500 cells/cm
2
 in 12-well plates and cultured in 

maintenance media until confluent (3-5 days). Once confluent, media was changed to 

mineralization media and treatment groups in transwell inserts were added. For MP 

groups, a high or low (3.28 and 0.328 mg MPs, respectively) were added to the transwell 

insert. This mass was chosen to match, by mass, the high and low ratios used in the 

spheroid studies. Media was changed daily.  

For spheroid studies, MP incorporation efficiency was determined incorporating 

MPs into ATDC5 spheroids at 1:3, 1:1, and 3:1 MP:cell ratios. After 6 hour, a portion of 

the spheroids was taken for counting, and the other portion was treated with 0.25% 

trypsin for 1 hour, followed by an overnight treatment with 5% sodium dodecyl sulfate 

(SDS) (Sigm-Aldrich). The number of MPs from dissociated spheroids were counted and 

incorporation efficiency was calculated by comparing MP number to number of 

spheroids and actual number of MPs expected (actual ratio/expected ratio). For each set 

of samples, incorporation efficiency was normalized to the 1:3 MP:Cell ratio.  

4.2.4 qPCR and DNA Analysis 

Spheroids were rinsed in PBS and subject to lysis buffer for an hour at 4°C before 

mRNA was extracted using a QIAshredder tissue homogenizer and RNeasy kit with 

DNase I digestion (Qiagen). For monolayer cells, cells were lifted with 0.05% trypsin and 

washed once in PBS, then incubated in lysis buffer for 15 minutes. cDNA was generated 

using SuperScript III Reverse Transcriptase (Invitrogen) with Oligo(dT)15 primers and 

dNTPs (Promega). Gene expression was analyzed using quantitative PCR amplification 
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performed on a StepOnePlus Real-Time PCR System (Applied Biosystems) in the 

presence of SYBR Green/ROX master mix (Applied Biosystems). Sequences for custom-

designed primers (Invitrogen) are listed in Table 4.1. 

Table 4.1. National Library of Medicine accession number and primer sequences 

(F=forward, R=reverse) for target genes used in qPCR.  
Target Gene NML Accession # Sequence 

RSP-18 NM_022551.2 
F- CGATGGGCGGCGGAAAATAGCCTTTGC 

R- CAGTGGTCTTGGTGTGCTGGCCTCGG 

Collagen II NM_031163 
F- ATGTATGGAAGCCCTCATCTTGC 

R- CAGCCTTCTCGTCATACCCTC 

Aggrecan NM_007424 
F- TGGCTTCTGGAGACAGGACT 

R- GGGACATGGTTGTTTCTGCT 

Collagen X NM_009925 
F- TGCCCGTGTCTGCTTTTACTGTCA 

R- TCAAATGGGATGGGGGCACCTACT 

To analyze PCR amplification data, the raw fluorescence data were processed 

using LinRegPCR (v12.11; http://www.hartfaalcentrum.nl). The starting amplicon 

number (No) was calculated based on mean efficiencies (E) and cycle threshold (Ct) using 

the formula No = Nt/E
Ct

,where Nt is the amplicon number at the cycle threshold. No for 

each target gene were normalized the starting amplicon numbers of the endogenous 

controls and then further normalized to no MP controls at each timepoint. 

 For DNA was extraction, cells were washed twice with PBS. DdH2O was added 

to cells for 20 minutes and then cells were subjected to a freeze-thaw cycle. Cells were 

then scraped from the 96 well plate and cell lysate solution was transferred to 1.7 mL 

tube. Cell lysate was sonicated for 20 minutes, then subjected to another freeze-thaw 

cycle. This was repeated once, then samples were spun down and supernatant was used 

for analysis DNA content was assessed with the CyQUANT Assay (ThermoFisher 

Scientific). 

 



www.manaraa.com

 97 

4.2.5 Histological Analysis and Stain Extraction 

For histological analysis of ATDC5 spheroids, spheroids were imbedded in 

histogel, sectioned at 10 µm sections and stained with Safranin-O or H&E according to 

standard protocols. Immunostaining for ECM deposition was performed using primary 

antibodies for collagen type II (Abcam).  Antigen retrieval was performed by incubating 

in 20 μg/ml proteinase K (Sigma-Aldrich) for 10 minutes at 37°C, blocked with 1.5% 

goat serum (Fisher Scientific), and incubated with the primary antibodies at a 1:20 

dilution overnight at 4°C. Secondary antibody binding with Alexa Fluor 488-conjugated 

goat polyclonal anti-mouse immunoglobulin G (IgG, Molecular Probes) was performed 

at room temperature for 1 hour. Samples were counterstained with Hoechst (Sigma-

Aldrich) to visualize the nuclei.  

For histological analysis of ATDC5 monolayer cells, cells were rinsed in ddH2O 

and then fixed in 95% ice cold methanol for 30 minutes. Cells were stained with either 

1% Alcian blue 8GX (Sigma-Aldrich) or 2% Alizarin red (Sigma-Aldrich) pH 4.2 in 0.1 

M HCl for 1 hour. Cells were then rinsed with ddH2O and imaged. Stain was extracted by 

incubating Alcian Blue stained cells with 6 M guanidine-HCl (Sigma-Aldrich) and 

Alizarin Red stained cells with 0.5M HCl and 5% SDS for 6 hours. Absorbance was 

measured at 630 and 405 nm for Alcian Blue and Alizarin Red extractions, respectively.  

A LIVE/DEAD staining kit (Life Technologies) was used to assess cell viability 

via confocal microscopy. Stacks with slices every 2 μm were flattened using the Z-

project function on Image-J. 
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4.2.6 Protein Analysis Experiments 

 For BMP-2 sequestration studies in conditioned media, 0.01, 0.2, and 1 mg of 

Heparin and PEG MPs were incubated in ATDC5 cell-conditioned media with 500 pg of 

BMP-2 overnight at 4°C on rotary. Supernatant was then analyzed using an ELISA 

(R&D Systems). For SDS-PAGE studies, heparin or PEG MPs were cultured in transwell 

with ATDC5 cells or media only, then isolated and washed once with PBS. MPs were 

combined with a loading buffer (63 mM  Tris-HCl pH 6.8, 350 mM SDS, 6.84 M 

glycerol, 0.75 mM Bromophenol Blue, 1.78 M β-mercaptoethanol) at a 4:1 MP:buffer 

ratio, then heated to 90°C for 5 minutes. MPs and a protein ladder (BioRad) were loaded 

onto a 12% polyacrylamide gel (BioRad) and ran at 200 V for 30-60 minutes.  The gel 

was stained with Silver Stain Plus (BioRad) according to the manufacturer’s protocol.  

4.2.7 Statistical Analysis 

All results are depicted as mean + standard deviation. ANOVA was used to 

identify significant factors and interactions, then Tukey’s post hoc test (significance level 

p < 0.05) was used to generate pairwise comparisons between means of individual sample 

groups and determine statistically significant differences (Minitab 15 Statistical 

Software). 

4.3 Results 

4.3.1 Microparticle Fabrication, Characterization and Incorporation in Spheroids 

 Heparin-MAm and PEG-DA MPs had similar diameters, 5.0±3.1 and 4.9±3.9 μm, 

respectively (Figure 4.1B,C). In BMP-2 loading studies, heparin MPs loaded nearly 
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100% of the BMP-2 in solution, while PEG MPs loaded almost no BMP-2 (Figure 4.1D). 

These studies provided rationale for using the PEG MPs as a low-binding material 

control for the remainder of this work.  

 

Figure 4.1. Similarly sized heparin and PEG MPs were fabricated. (A) Heparin MAm 

was cross-linked via free-radical initiated polymerization (B) Phase microscopy images 

of heparin (stained with alcian Blue) and PEG MPs. (C) Heparin MPs and PEG MPs had 

average diameters of 5.0±3.1 and 4.9±3.9 μm, respectively. (D) Percent BMP-2 loaded 

on heparin MPs vs. PEG MPs normalized to total BMP-2 in soluble control 

(*=significantly different than heparin MP group; p<0.05). 

 MPs could be incorporated into ATDC5 spheroids at several different ratios: 3:1, 

1:1, and 1:3 MP:cell, as shown in sections of spheroids stained with Safranin-O and Fast 

Green (Figure 4.2B). Incorporation efficiency was similar for both heparin and PEG 

MPs, but decreased with increasing amounts of MPs (Figure 4.2C). The 3:1 MP:cell ratio 
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was used for the remainder of the studies, but when taking the incorporation efficiency 

into account, effectively becomes a 2:1 MP:cell ratio. 

 

Figure 4.2. Heparin and PEG MPs can be incorporated into ATDC5 cell spheroids at 

similar efficiencies. (A) Heparin or PEG MPs are incorporated in spheroids via forced 

aggregation. (B) Heparin and PEG MPs (heparin MPs shown here in red, stained with 

Safranin-O) can be incorporated at a 1:3, 1:1, and 3:1 MP:cell ratio. (C) Heparin and PEG 

MPs can be incorporated into 700 cell ATDC5 spheroids with similar incorporation 

efficiency (no significant differences between heparin and PEG at each ratio, p<0.05).  

4.3.2 Morphology and Viability of MP-Containing ATDC5 Spheroids 

700 cell ATDC5 spheroids with high and low doses (3:1 and 1:3 MP:cell ratios, 

respectively) of heparin and PEG MPs were formed (Figure 4.3A). Spheroids were 

cultured for 18 days and timepoints were taken on days 1, 6, 12, and 18 to assess overall 

morphology, cell viability, GAG and collagen II deposition, and gene expression (Figure 

4.3A). All spheroids were observed to grow over time and developed a dense cell border 

(Figure 4.3B). Heparin MPs stained a light purple with H&E staining, while PEG MPs 
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were dehydrated and either appeared as small purple spheres or were lost during 

histological processing, leaving behind holes in the matrix. No differences in spheroid 

viability were observed in any of the groups at day 18 (Figure 4.4).  

 

Figure 4.3. (A) Heparin and PEG MPs were incorporated at high and low ratios and 

cultured for 18 days on rotary culture. Gene expression and histological analyses were 

conducted at days 1, 6, 12, and 18, and viability analysis at day 18. (B) No MP control 

and heparin (reds) and PEG MP (blues) containing spheroids over the course of 18 days, 

stained with H&E. Groups are listed at the top of each set of images. PEG MPs appear as 

holes within the spheroid matrix due to histological processing.  
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Figure 4.4. LIVE/DEAD staining for heparin MP and PEG MP groups at day 18. 

Confocal microscopy was used to image spheroids and stacks were z-projected after 

green (live) and red (dead) channels were merged. 

4.3.3 Heparin MP-Mediated Modulation of ATDC5 Cell Spheroid Differentiation 

 Gene expression markers of chondrocytic differentiation were analyzed at days 1, 

6, 12, and 18. Overall, it was observed that heparin MPs caused greater reductions in 

gene expression than PEG MPs (Figure 4.5). For collagen II, high heparin and PEG MP 

groups showed significantly lower gene expression than the cell control at day 6, but the 

magnitude was much greater for the heparin MP group (7.4±1.8- and 1.8±0.2-fold 

decreased for heparin and PEG, respectively). In addition, the low MP group was 

significantly decreased as compared to the cell control in the heparin group, while no 

differences were observed in the PEG group (Figure 4.5A).  For aggrecan, the magnitude 

of gene expression decrease for heparin MPs as compared to PEG MPs was also much 

greater at day 6 (16.5+6.2- and 2.9+0.2-fold decrease for heparin and PEG, respectively). 

Furthermore, the decreased expression for aggrecan persisted through day 18 for the 
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heparin MP group, while only increases were observed in PEG MPs groups at later 

timepoints (Figure 4.5B). No differences in collagen X expression were observed for 

heparin MP groups, and PEG MP groups showed slight upregulation by days 12 and 18 

(Figure 4.5C).  

 

Figure 4.5. Chondrocytic gene expression for heparin and PEG MPs groups at high and 

low MP ratio for (A) collagen II, (B) aggrecan, and (C) collagen X. Fold change 

normalized to the no MP control is reported (*=significantly different than no MP on 

same TP; #=significantly different than low MP on same TP; p<0.05). 

 IHC for collagen II was assessed for heparin and PEG MP groups on days 12 and 

18. At day 12, less staining for collagen II deposition was observed in the low and high 
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heparin MP groups as compared to the PEG MP groups (Figure 4.6A). By day 18, levels 

of staining appeared to be similar, though possibly still slightly lower in the high heparin 

MP group compared to all other groups (Figure 4.6B).  

 

Figure 4.6. IHC for collagen II (green) at (A) day 12 and (B) day 18 for heparin and PEG 

groups with low and high MPs. Nuclei are shown in blue. 

GAG deposition was assessed at days 1, 6, 12, and 18. Little staining for GAG 

deposition was observed at days 1 and 6 (data not shown), but substantial staining for 

GAG deposition was observed at days 12 and 18 in PEG and no MP groups (Figure 4.7). 
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In contrast, very little staining for GAG deposition was observed in heparin MP groups at 

both 12 and 18 days. High magnification images indicate staining for pericellular GAG 

deposition in all groups but the high heparin MP group (Figure 4.7, arrows in high mag 

images). As heparin MPs stain with safranin-O, they also appear stained red in the matrix 

(Figure 4.7, arrowheads in high mag images), but look distinctly different from the 

endogenous pericelluar GAG deposition.  

 

Figure 4.7. Safranin-O staining for GAG deposition (red) in heparin and PEG groups 

with low and high MPs. Heparin MPs appear dark red and PEG MPs appear clear or light 

purple. Inset boxes on day 18 are shown at high mag below original image. Staining for 

GAG deposited by cells appears pericellularly (arrows with tail) while GAG MPs appear 

round (arrows without tail) (scale bars = 50 µm). 

4.3.4 Heparin MP-Mediated Modulation of ATDC5 Cells in Transwell Culture 

ATDC5 cells were cultured in transwell with heparin and PEG MPs (low and high 

dose for heparin MPs, high dose only for PEG MPs), allowing for exchange of soluble 

factors but no physical contact between cells and MPs. Gene expression was measured at 

day 6 and 12 and GAG and mineral deposition was assessed at day 12 (Figure 4.8). At 
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day 6, significant down regulation was observed in the high heparin MP group for 

chondrocytic markers collagen II and aggrecan as compared to the low and no MP 

groups. In contrast, no differences were observed between PEG MP groups and the no 

MP control group at day 6. No differences in gene expression were observed between any 

groups at day 12 (Figure 4.8A). At day 12, cells were stained for GAG (alcian blue) and 

mineral deposition (alizarin red), and reduced staining was observed in the heparin MP 

groups compared to the PEG and no MP group. The stain was extracted and quantified, 

which confirmed that the heparin MP groups showed significantly less staining than the 

PEG MP and no MP control groups (Figure 4.8B and C).  

 

Figure 4.8 ATDC5 cells were cultured in transwell with heparin and PEG MPs. (A) Gene 

expression for chondrocytic markers collagen II, aggrecan, and collagen X at day 6 is 

reported as fold change normalized to the no MP group (*=significantly different than no 

MP group; p<0.05). (B) Representative images of GAG (alcian blue) and (C) mineral 

(alizarin red) deposition. Graphs show quantification of stain extraction (#=significantly 

different than cell only group; *=significantly different than indicated group, p<0.05). 
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Finally, DNA content was measured for both heparin and PEG MP groups to assess 

difference in cell number. Heparin MP groups showed significantly more DNA than the 

cell control group, while the PEG MP showed no significant differences (Figure 4.9).  

 

Figure 4.9 DNA content for heparin and PEG MP groups normalized to no cell control 

(#=significantly different than cell only group, p<0.05).  

4.3.5 Protein Sequestration and Analysis 

SDS-PAGE gels showed more proteins at greater intensity for heparin MPs as 

compared to PEG MPs incubated with ATDC5 cells for two and four days (Figure 

4.10A). In addition, heparin MPs were able to sequester BMP-2 in conditioned media 

while PEG MPs did not sequester BMP-2 (Figure 4.10B). This held true for MPs/protein 

ratios at least as low as 500 pg BMP-2/0.01 mg MPs, or 0.05 µg BMP-2/mg MP. Finally, 

when run on SDS-PAGE, an additional band at approximately 16-17 kDa was observed 

for heparin MPs incubated with cells compared to those incubated in media only (Figure 

4.10C).  
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Figure 4.10. Analysis of heparin and PEG MP protein sequestration (A) SDS-PAGE for 

Heparin and PEG MPs in transwell with ATDC5 cells for 2 or 4 days. (B) Heparin and 

PEG MP sequestration of BMP-2 in ATDC5 conditioned media (*=significantly different 

than indicated group, p<0.05). (C) SDS-PAGE for Heparin MPs incubated overnight in 

transwell with cells (right, “Media + Cell Incubation”) or with media alone (left, “Media 

Incubation”). Red box indicates a band observed only in MPs incubated with cells, 

approximately 16-17 kDa. 

4.4 Discussion 

 In these studies, heparin and PEG MPs were cultured with ATDC5 cells in 

spheroid and monolayer culture, and in both formats heparin MPs were able to delay or 

decrease differentiation, likely through soluble factor sequestration. Overall, the objective 

of this study was to modulate endochondral ossification through presentation of heparin 

materials, as heparin is known to bind an abundance of growth factors implicated in 

differentiation, including BMP-2, IHH, FGF-2, WNT, and TGF-β [25]. Thus, heparin 

MPs were incorporated into ATDC5 spheroids to evaluate their effect in a three-

dimensional environment, which better mimics the cell-cell and cell-matrix interactions 

important for chondrocytic and osteogenic differentiation  [36,314]. However, when 

integrated in spheroids, it is possible that these MPs would exert not only an effect on the 

concentration of growth factors in the matrix, but also on the number of cell-cell 

interactions that could form, which are often implicated in differentiation and cell 
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behavior [316]. To ensure that observed results were due to protein binding and not due 

to the physical presence of MPs in the matrix, PEG MPs were used as a low-binding 

material control [28,318–320]. Thus, heparin and PEG MPs of similar diameter were 

formed (Figure 4.1 B,C) and protein sequestration studies indicated that while heparin 

MPs loaded nearly 100% of BMP-2, PEG MPs loaded very little of this protein. Then, 

heparin and PEG MPs were incorporated into ATDC5 spheroids at several different ratios 

with varying efficiencies (Figure 4.2B, C). A final ratio of 3:1 MP:cell (2:1 MP:cell ratio 

if efficiency is accounted for) was selected as the high MP dose because previous results 

indicated that this ratio can present a large amount of material in the ECM without 

compromising spheroid formation [259]. A ten-fold lower ratio (1:3 MP:Cell) was chosen 

for the low MP ratio in these experiments to evaluate if the influence of heparin MPs was 

dose-dependent.  

While there are many examples of successful incorporation of positively and 

negatively charged MPs into cell spheroids [232,233,259,263], we and others have been 

unable to incorporate unmodified PEG materials into dense cell aggregates [220]. 

Previously, the fibronectin cell-adhesive sequence RGD has been incorporated into PEG 

MPs to promote incorporation into spheroids [220], but MPs functionalized with the 

RGD peptide have been found to enhance chondrocytic differentiation when integrated 

into cell aggregates [220,254], which would be counterproductive in the PEG control 

group. It has been suggested that the negatively charged cell glycocalyx causes cells to be 

attracted to positive surfaces, and poly-l-lysine (PLL) has been used previously to 

promote cell binding on PEG-based surfaces [258]. Thus, in an effort to confer a slight 

positive charge on the MP surface and allow for incorporation into spheroids without 
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changing the low protein-binding properties of PEG, PLL was encapsulated into PEG 

MPs during MP fabrication. The addition of PLL allowed PEG MPs to be incorporated 

into the ATDC5 spheroids without affecting the low-binding capacity of PEG MPs 

(Figures 4.1C and 4.10A,B). More so, as PLL can be toxic at high levels [321], 

LIVE/DEAD staining indicated that the concentration of PLL used in the PEG MPs was 

not cytotoxic (Figure 4.4). 

 Heparin and PEG MPs were incorporated into ATDC5 spheroids for 18 days to 

assess the influence of heparin MPs on endochondral ossification, a time period found to 

be sufficient for ATDC5 cells to produce chondrocytic and osteogenic gene expression 

markers and matrix proteins when cultured in mineralization media [304,305,308–313]. 

General spheroid morphology was assessed over the course of culture, and spheroids 

were found to grow larger over time, consistent with the high proliferative capacity 

observed for ATDC5 cell in vitro culture in previous work [306,322], and to form a dense 

cell border on the spheroid surface (Figure 4.3B). Such dense cell borders have also been 

observed in spheroids composed of other cell types [220,233,259,323], and may be a 

result of cell reorganization due to nutrient availability or differentiation state. MPs 

remained in the matrix over the course of 18 days; however, due to sectioning and the 

solvents used in the staining process, PEG MPs often shrunk or fell out of the matrix 

during histological processing, leaving behind what appear as holes in the spheroid 

matrix (Figure 4.3B).  Finally, no differences in LIVE/DEAD staining were observed 

among any of the culture conditions, indicating that viability was not negatively impacted 

by incorporation of MPs into ATDC5 cell aggregates (Figure 4.4). Thus,  general 
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morphology and viability staining validated this platform for further evaluation of the 

influence of heparin MPs on endochondral ossification.  

 Cellular differentiation was delayed or reduced in groups with heparin MPs as 

compared to PEG MP and no MP control groups, as shown by gene expression and stains 

for matrix molecules. In the presence of a high dose of heparin MPs, gene expression for 

chondrocytic markers was downregulated as compared to no MP and PEG MP controls, 

indicating that heparin MPs delayed chondrocytic differentiation. As only subtle 

differences were observed for the low heparin MP group, the observed delay may have 

been dose-dependent. Interestingly, gene expression for the high heparin MP group was 

similar to that of the no MP control by later time points, suggesting that the effect of 

heparin MPs also might have been transient (Figure 4.5). Decreased staining for collagen 

II and GAG was observed in the high heparin MP group as compared to PEG MP and no 

MP control groups, confirming trends observed in gene expression data (Figures 4.6 and 

4.7). Taken as a whole, these results indicate that heparin MPs transiently delay or reduce 

endochondral ossification in a dose-dependent manner.  

 To further confirm that changes in differentiation observed were due to the 

presence of heparin and not simply due to MPs in the aggregate matrix, heparin and PEG 

MPs were cultured in transwell culture with monolayer ATDC5 cells, allowing exchange 

of soluble factors between cells and MPs without physical contact. Similar to what was 

observed in spheroid culture, heparin MPs decreased/delayed chondrocytic differentiation 

in ATDC5 cell transwell culture, which also appeared to be dose-dependent and transient 

(Figure 4.8). DNA content analysis indicated that observed affects were not due to 

decreases in cell numbers in the heparin MP group, as DNA content was higher in this 
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group than cell controls (Figure 4.9). In addition, proteins bound by heparin and PEG 

MPs from days 2 and 4 in transwell culture were run on SDS-PAGE gels, and observed 

protein profiles showed that PEG MPs bound fewer proteins than heparin MPs days 2 and 

4 (Figure 4.10A). Finally, gels also showed few differences between the protein profiles 

of the heparin MP groups at days 2 and 4 (Figure 4.10A). This may indicate that heparin 

MPs become saturated with protein quickly, and while exchange of protein may occur 

initially, eventually high affinity proteins may cover the MP, preventing further binding. 

The “saturation” of heparin MPs could possibly explain why a transient delay in 

differentiation is observed and why the response is dose-dependent. Overall, as heparin is 

known to be a potent binder of many growth factors involved in endochondral 

ossification [25,106], from these results it was hypothesized that sequestration of soluble 

factors was the mechanism behind heparin MP-mediated modulation in differentiation. 

In ATDC5 cell culture, two types of proteins could potentially be sequestered by 

heparin MPs: 1) cell-secreted proteins and 2) proteins found in FBS, as ATDC5 cell 

culture is carried out in serum. ATDC5 cells produce a variety of heparin-binding growth 

factors that could affect differentiation, including IGF-2, TGFβ-2, WNT, BMP-2, IHH, 

FGF-9 and FGF-18 [25,308,309,324,325]. Furthermore, many heparin-binding proteins 

are also present in serum, including but not limited to fibronectin, fibrinogen, kininogen, 

plasminogen, vitronectin, haptglobin, and lipoproteins [326–332]. Serum can also contain 

heparin-binding growth factors, but generally at a very low concentrations compared to 

the high abundant proteins listed above [326,327]. Thus, to evaluate if heparin MPs could 

still bind small growth factors in the presence of cell-conditioned, serum-containing 

media, sequestration of BMP-2 that had been spiked into ATDC5 conditioned media was 
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assessed. Results indicate that heparin MPs can still bind BMP-2 in the presence of cell-

conditioned media containing serum, while PEG MPs did not show any BMP-2 binding 

(Figure 4.10B). This suggests that heparin MPs have the potential to sequester cell-

secreted protein in ATDC5 culture, and to further investigate this possibility, heparin 

MPs incubated in transwell with cells or in FBS-containing media alone were run on 

SDS-PAGE. Resulting protein profiles indicated that heparin MPs incubated with cells 

bound additional proteins in comparison to heparin MPs incubated in media alone (Figure 

4.10C). These additional proteins had a MW of approximately 17 kDa, which suggests 

that these proteins could be one or more of several ATDC5 produced growth factors. 

Overall, these results indicate that heparin-mediated delays in differentiation were likely 

a result of the binding of both cell-secreted and serum proteins. 

Future experiments could help elucidate the mechanisms behind observed 

changes in differentiation. To determine if saturation of heparin MPs is responsible for 

transient delays in differentiation, heparin MPs previously cultured with ATDC5 cells for 

12 days could be incubated with a second population of ATDC5 cells. If MPs truly do 

become saturated, then no changes in differentiation would be observed in the second 

population. In addition, to determine if the response is dose-dependent on heparin and not 

the total amount of MPs, heparin MPs with varying amounts of heparin could be 

employed. Heparin MPs with different amounts of heparin have different protein binding 

capacities (see Chapter 6 and Figure 6.5B), allowing control of heparin dosage while 

maintaining equal MP number. Finally, to identify the protein(s) comprising the 17 kDa 

band observed for heparin MPs incubated with cells, mass spectrometry or western blots 

for proteins implicated in endochondral ossification, mentioned above, could be 
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performed. If particular proteins are able to be identified, these proteins could be dosed 

back into ATDC5 cell cultures containing heparin MPs. If normal differentiation was 

restored when the protein dose overwhelmed the binding capacity of heparin MPs, this 

would provide more evidence that this phenomenon is mediated by protein sequestration.  

 Employing heparin materials to delay differentiation has the potential to be 

beneficial for growth plate injury repair and several other applications. Currently, the 

gold standard for growth plate defect repair is to fill the defect with an inert substances, 

such as fat, muscle, bone wax, or silicone to prevent bony bridge formation [112]. These 

materials cannot stimulate regeneration of the damaged growth plate tissue, which has 

motivated the development of biomaterial-based strategies [112,113]. In general, 

therapeutic cell types such as MSCs or chondrocytes are seeded into hydrogel-based 

scaffolds and implanted into the defect. This technique has been met with varying levels 

of success, but directing regeneration of the tissue by native or delivered cells has not 

been achieved [111,113–118]. Thus, the use of heparin-based materials could be explored 

to modulate cellular differentiation through sequestration of cell-secreted proteins, 

possibly delaying or preventing undesirable ossification. Additionally, heparin-based 

materials could be useful in craniosynostosis, which involves premature fusion of cranial 

bones and can lead to craniofacial deformities and neurological complications if left 

untreated [207,208,333]. The current treatment involves surgery to separate and reshape 

fused cranial bones, but resynostosis, or refusing of the bones, is common due to high 

osteogenic potential in the tissue [207]. Biomaterial-based strategies to prevent 

resynostosis include delivery of antibodies against osteogenic proteins such as BMPs and 

TFGβs, but the short half-life of antibodies decreases the efficacy of these therapies 



www.manaraa.com

 115 

[209,210,334]. However, heparin materials, which unlike antibodies do not undergo rapid 

degradation in vivo, could be employed to sequester osteogenic proteins to prevent 

resynostosis. Finally, for in vitro differentiation of MSCs in chondrogenic applications, 

cells often undergo hypertrophic differentiation rather than maintaining a chondrocytic 

phenotype [37]. Current strategies to promote a chondrocytic phenotype revolve around 

achieving the proper milieu of growth factors, either by adding exogenous growth factors 

to the culture [37,129,130] or by relying on proteins secreted during MSC-chondrocyte 

co-culture [128,131–135]. It may be possible that application of heparin MPs would help 

prevent or delay hypertrophic differentiation through growth factor sequestration. Thus, 

the therapeutic potential of heparin-mediated delays in differentiation could be explored 

in variety of tissue engineering applications that require modulation of the differentiation 

timeline.  

 In these studies, heparin was selected due to its ability to bind many proteins 

involved in differentiation [25], enabling the material to make a significant impact on the 

cellular microenvironment. This could be beneficial over other systems that allow for 

specific sequestration of single proteins, as multiple growth factors are generally required 

for cellular differentiation and such systems tend to be expensive. In addition, as cell 

phenotype and consequential protein release profile evolve with time, a material with 

specific-sequestration abilities would only be relevant at certain stages during 

differentiation, while heparin could continue to bind an assortment of proteins throughout 

the entire course of differentiation. Still, sequestration of proteins in a non-discriminate 

manner is not always advantageous, as two heparin-binding growth factors might have 

opposing affects in a differentiation process, such as BMPs and FGFs in endochondral 
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ossification [23,106].  In such cases, single-protein affinity systems could be beneficial. 

Some of these systems, such as antibody-based sequestration platforms, have short half-

lives [209,210]. Other systems have utilized peptide sequences that sequester specific 

proteins, such as VEGF, TNFα, and FGF [43,46,335], to increase the stability of the 

sequestering system. As analyses techniques for heparin-sequestered proteins improve, 

heparin MPs could be used as a “first pass” to understand how protein sequestration 

affects a system of interest, and analysis of sequestered protein could inform design of 

future, protein-specific sequestration systems to enhance control of differentiation. Thus, 

the ability of heparin to sequester a variety of growth factors involved in differentiation 

enables the employment of heparin MPs as tools to modulate cellular differentiation and 

investigate sequestered proteins.  

4.5 Conclusion 

 In this work, heparin MPs delayed chondrocytic differentiation in the ATDC5 cell 

line in both spheroid and transwell culture as assessed by chondrocytic gene expression 

and matrix molecule deposition. In contrast, PEG MPs did not have a strong effect on 

differentiation, suggesting that protein sequestration was possibly responsible for the 

affects observed. SDS-PAGE supported this hypothesis, indicating that after culture with 

ATDC5 cells, more proteins were bound to heparin MPs than PEG MPs, and that heparin 

MPs may have been able to sequester cell-secreted proteins in the ~17 kDa size range. 

Overall, the studies presented here act as a proof-of-concept for GAG-based modulation 

of endogenous growth factors to control cell behavior. The ability harness the potential of 

endogenous growth factors within the cellular microenvironment is an emerging theme in 

the field of regenerative medicine, as it eliminates the need for exogenous protein, thus 
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reducing cost, requirements for FDA approval, and concerns about recombinant protein 

potency [3]. Thus, heparin materials have the potential to be used to sequester proteins 

toward the applications of modulating cell behavior, a valuable technique in tissue 

engineering and regenerative medicine. 

 Once we observed the ability of heparin MPs to modulate cellular differentiation, 

we set out to design heparin-based technologies that enabled enhanced temporal control 

over protein sequestration and subsequent re-presentation. In addition, we were interested 

in designing degradable heparin-based MPs to allow release and subsequent analysis of 

sequestered proteins. Thus, we developed core-shell heparin-PEG and degradable 

heparin-PEG-based MPs to achieve these goals.  
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CHAPTER 5 

CORE-SHELL MICROPARTICLES FOR PROTEIN 

SEQUESTRATION AND CONTROLLED RELEASE OF A 

PROTEIN-LADEN CORE
5
 

5.1 Introduction 

Tissue regeneration is a complex process that involves intricate coordination of 

cellular events, many of which are modulated by proteins [3]. The concentration of these 

proteins, often growth factors or cytokines, must be spatially and temporally controlled to 

ensure proper tissue growth [175]. While biomaterial-based controlled delivery systems 

have traditionally been used to deliver single growth factors [10,42], tissue regeneration 

may require more complex temporal control over growth factor presentation and cell 

signaling [3]. Of particular interest, cell-secreted proteins have the potential to be 

captured and manipulated to enhance tissue regeneration and repair [3,336]. For example, 

a protein might be locally sequestered by a biomaterial and its effect thus amplified 

during tissue repair [40,43–45]; alternatively, an undesirable protein might be captured 

and eliminated from the cellular microenvironment [46]. Combining these two ideas, a 

protein undesirable at one point in time might be captured and temporarily eliminated 

from the microenvironment until it is released at a second point in time, when its 

expression is desirable for tissue regeneration [3]. Thus, development of dynamic 

                                                 

 

 
5
 Portion of this section were adapted T.E Rinker, B.D. Philbrick, and J.S. Temenoff, Core-Shell 

Microparticles for Protein Sequestration and Controlled Release of a Protein-Laden Core, in revision. 
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biomaterials that can sequester and temporarily isolate cell-secreted proteins prior to a 

triggered release may achieve the level of temporal control needed to more fully regulate 

tissue regeneration and repair.   

Core-shell microparticle (MP) technologies are a particularly attractive 

technology for temporally modulating protein presentation in the cellular 

microenvironment [237,245]. Traditionally, core-shell MPs have either been used to 

prolong release and activity of cargo in an inner core by manipulating the degradation 

prolife of an outer shell [51,52] or to sequester and concentrate various biomarkers from 

bodily fluids, such as plasma or urine, for diagnostic tests [48–50]. To date, only a 

handful of core-shell MP systems have been used to deliver proteins [52,245–247]. In 

these studies, core-shell MPs were advantageous because either 1) burst release of the 

protein encapsulated in the core was significantly reduced due to the protective shell 

[52,245,247], or 2) the shell significantly prolonged protein bioactivity [246]. Similarly, 

only a few studies have shown the ability of core-shell MPs to sequester protein [48–50]. 

In contrast to core-shell MPs used for controlled release, core-shell MPs for biomarker 

sequestration are designed with an outer shell of small mesh size to exclude large proteins 

such as albumin, but to allow passage of smaller biomolecules, which remain trapped in 

the protein-binding core until retrieved for further analysis [48–50]. The two core-shell 

MP applications discussed above, protein delivery and biomarker sequestration, do not 

fully address the need for technologies able to sequester, isolate, and release cell-secreted 

proteins. However, taking inspiration from these technologies, it may be possible to 

create core-shell MPs not only to sequester proteins of interest, but also redeliver them at 

a user-defined time. Thus, in this work, we set out to develop a multifunctional heparin-
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poly(ethylene-glycol) (PEG) core-shell MP that 1) preserves protein bioactivity, 2) 

delivers protein in a temporally controlled manner with minimal burst release and 3) 

sequesters and re-delivers protein on a user-defined timescale.   

A non-degradable heparin MP was used as a protein-sequestering core due to its 

high affinity for growth factors and ability to preserve protein bioactivity. Heparin is a 

highly sulfated glycosaminoglycan, often used in tissue engineering scaffolds due to its 

ability to bind positively charged proteins [11,42,58,59,196,337]. Importantly, heparin 

can bind many growth factors involved in tissue formation, including bone 

morphogenetic protein-2 (BMP-2), Indian hedgehog (IHH), basic fibroblast growth factor 

(FGF-2), WNT, and transforming growth factor-β (TGF-β) [25]. Previous studies with 

these heparin MPs have shown high BMP-2 loading capacity and have suggested that 

BMP-2 is bioactive and can interact with cells while still bound to the MP [59]. 

Furthermore, heparin can protect proteins from denaturation, as it has been well 

documented that it protects FGF-2  from thermal and proteolytic degradation [338] and 

recently found that it can protect BMP-2 from degradation by heat and in aqueous 

solutions at physiological pH [58,339]. Thus, use of heparin MPs as a sequestering core 

could minimize burst release, present protein to cells only when the protein-loaded core is 

in contact with cells, and prevent protein denaturation. 

PEG-diacryate (PEG-DA) was used for the degradable shell, as PEG can be 

chemically modified with a variety of functional groups and PEG hydrogels permit 

protein diffusion [27,28]. To achieve user-defined shell degradation, dithiothreitol (DTT) 

was integrated into the PEG-DA  network, which enhances hydrolytic degradation of the 

polymer network [60]. Thus, use of a PEG-DA-based shell enables protein diffusion into 
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the heparin MP core, which then remains physically separated from cells until shell 

degradation.  

In this work, we developed heparin-PEG core-shell MPs for potential applications 

in protein sequestration and subsequent re-delivery. A re-emulsification method was 

established to encapsulate pre-formed heparin MPs in a degradable PEG-based shell. 

Then, a proof-of-principle experiment was conducted to demonstrate that BMP-2-laden 

heparin MPs can be delivered in a temporally controlled manner to cells from core-shell 

MPs with a hydrolytically-degradable shell. Subsequently, it was shown that BMP-2 

could be sequestered through the PEG-based shell onto the heparin core, and the BMP-2-

laden heparin core could then be released to stimulate a cell response, thus demonstrating 

that the core-shell MPs provide enhanced temporal control over protein sequestration and 

release for potential applications in tissue regeneration and repair. 

5.2. Materials and Methods 

5.2.1 Polymer Synthesis 

PEG-DA was synthesized according to previous methods [148]. Briefly, PEG 

(Sigma-Aldrich; Mn = 3.4 kDa) was reacted with acryoloyl chloride (Sigma-Aldrich) in 

100% molar excess in methylene chloride (Fisher Scientific), with trimethylamine 

(Sigma-Aldrich) acting as a catalyst at a 1:1 molar ratio with PEG. The reaction was 

allowed to proceed under nitrogen purge overnight, at which point the aqueous and 

organic phases were separated and PEG was precipitated from the organic phase using 

diethyl ether (EDM Millipore) and dried. Heparin was functionalized with 

methacrylamide according to previous methods [40]. Briefly, the reaction was carried out 

in a phosphate buffer of pH 5 with 20 mg/mL heparin, 83 mM N-
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hydroxysulfosuccinimide sodium salt (Sigma-Aldrich),  100 mM N-(3-aminopropyl) 

methacrylamide hydrochloride (Polysciences), and 78 mM (N-3-Dimethylaminopropyl)-

N’-ethylcarbodiimide hydrochloride (EDC) (Sigma-Alrich) for 2 hours on ice. An 

additional round of EDC was added, resulting in a final molarity of 156 mM. After 4 

more hours, solution was dialyzed for 2-3 days and lyophilized. All polymers were stored 

at -20°C prior to use. To fluorescently tag heparin, heparin methacrylamide was 

dissolved at 10 mg/mL in 0.1 M Na2HPO4, pH 6 and reacted with Alexa-Flour (AF) 633 

Hydrazide (Invitrogen) at 5.7 μM concentration with 0.1 M EDC for 1 hour. The solution 

was dialyzed for 2 days and lyophilized. Proton NMR (
1
H NMR) was used to determine 

the percent functionalization of heparin methacrylamide as previously described [59]. 

Briefly, Heparin was dissolved at 10 mg/mL in deuterated water and run on a Bruker 

Avance III 400 spectrometer. The percent of carboxyl groups substituted with 

methacrylamide groups was determined by comparing the integration regions of N-(3-

aminopropyl) methacrylamide hydrochloride and unmodified heparin.  

5.2.2 Microparticle Fabrication  

For Heparin MP fabrication, Heparin methacrylamide MPs were formed 

according to previous methods [59]. Briefly, an aqueous phase of 10% heparin 

methacrylamide (wt%), 18 mM ammonium persulfate (Sigma-Alrich), and 18 mM 

N,N,N′,N′-Tetramethylethylenediamine (Sigma) were emulsified against corn oil with 

1.67% (v/v) Tween-20 (polysorbate 20; BDH) at a 1:120 ratio aqueous:oil phase. MPs 

were cross-linked under nitrogen purge at 60°C for 30 minutes, then washed with acetone 

and water. Heparin MPs were filtered using a size extrusion device (Lipex Thermoline 

extruder, Northern Lipids) against a 12 μm nucleopore membrane to ensure MPs were all 
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less than12 μm in diameter. For AF633 tagged heparin MPs, the same procedure was 

followed but tagged heparin was included at 70 wt% total polymer content.  

Core-shell MPs were formed by suspending pre-formed heparin MPs in a 

precursor aqueous phase containing 16 wt% PEG-DA, 0.05 wt% Irgacure 2959 

Photoinitiator (Ciba), 2 mg/mL poly-L-lysine (PLL, Sigma-Aldrich), 45 mM DTT 

(degradable MPs only) and 0.33 mg/mL FITC-PEG-SH (1 kDa; NANOCS; for 

fluorescently tagged MPs only). For MPs with FITC-PEG or DTT, the aqueous phase 

was allowed to incubate for 1 hour at 37°C to allow for a click reaction to occur between 

the thiolated FITC molecule or DTT and the acrylate group on the PEG molecules. The 

aqueous phase was then emulsified with a homogenizer against a mineral oil phase (light, 

white; Ameresco) with 0.3-1.3% (v/v) Span-80 (sorbitan monooleate; TCI) at a 1:16.7 

ratio aqueous:oil phase, nitrogen purged for 1 minute, then cross-linked under UV light 

(approximately 10.5 mW/cm
2
) in a 35x10 mm petri dish for 10 minutes. Core-shell MPs 

were then washed with water and filtered using the size extrusion device against a 12 μm 

filter to remove any remaining free heparin MPs. PEG-based MPs were made in a similar 

fashion to the core-shell MPs, but without heparin MPs in the aqueous phase. 

PEG-based MPs were made in a similar fashion to the core-shell MPs, but without 

heparin MPs in the aqueous phase. Dithiothreitol (DTT) was added to the aqueous phase 

at a 40 or 45 mM concentrations, corresponding to a PEG:DTT molar ratio of 1.42:1 or 

1.21:1 , for the slow- and fast-degrading MPs, respectively.  For sizing studies, 0.07, 1.3, 

and 2.0 wt% Span-80 was included in the oil phase.  
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5.2.3 Microparticle Characterization 

To characterize core-shell MPs, fluorescent core-shell MPs were imaged via 

confocal microscopy. Heparin methacrylamide tagged with Alexa Flour (AF) 633 was 

used to fabricate the heparin MP core and FITC-PEG-SH was included in the aqueous 

PEG phase. Confocal microscopy (20x objective, LSM 700; Zeiss) was used to image 

stacks of MPs at 2 μm intervals. To immobilize MPs for imaging studies, core-shell MPs 

were suspended in a 10 wt% PEG-DA (8kDa) phase with 0.05% D2959  and cross-linked 

under UV light (approximately 10.5 mW/cm
2
) in PTFE (Teflon) wells for 10 minutes to 

form MP-containing hydrogels discs of approximately 6 mm in diameter and 1 mm thick. 

This kept MPs from drifting while confocal stacks were being taken. Stacks were then z-

projected and orthogonal views were used to confirm complete encapsulation of heparin 

MPs within the PEG-based shell.  

To quantify number of heparin MPs/core-shell MP, ImageJ was used to z-project 

and split stacks into FITC (green, PEG-based shell) and AF633 (red, heparin core) 

channels. Then, each PEG-based shell was defined as a Regions of Interest (ROI) through 

thresholding and particle analysis of the FITC channel. Next, the number of heparin MPs 

in each ROI was counted using thresholding and particle analysis of the AF633 channel. 

Finally, number of heparin MPs per each core-shell MP was graphed against its cross-

sectional area (CSA; μm
2
). Linear correlations were obtained for masses of 0.1, 0.25, 0.5. 

0.75, and 1 mg heparin MPs suspended in precursor PEG phase and each mass was tested 

in three separate MP batches (n=3 batches, 50-100 MPs analyzed/batch).  

In all subsequent studies, a mass of 1 mg heparin MPs was used. For each batch 

of core-shell MPs used for protein pull-down studies and cell studies, core-shell MPs 
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were sized and a histogram of core-shell CSA was constructed with binning at every 40 

μm
2
. The average slope of the lines of the linear correlations obtained for a mass of 1 mg 

was then used to determine an average number of heparin MPs/core-shell MP based on 

average number of core-shell MPs per each bin. With this information, the correct 

number of core-shell MPs could be used to match the mass of heparin in the core-shell 

MPs to the mass of the heparin MP controls. 

For core-shell and PEG-based MP degradation studies, MPs were counted with a 

hemocytometer and 1 million MPs/mL of PBS were incubated at 37°C on a shaker plate 

at 65 RPM (Barnstead Lab-Line, Multipurpose Rotor). 30 μL aliquots of MP solution 

was taken every 2-3 days and imaged using phase microscopy. Core-shell MPs were 

determined to be degraded when few (less than10 MPs) or no core-shell MPs were 

visible. Slow- and fast-degrading PEG-based MPs were treated in a similar fashion. 

For PEG-based MP sizing studies, PEG-based MPs with 0.07, 1.3, and 2.0 wt% 

Span-80 were fabricated. MPs were sized by using ImageJ to manually measure MP 

diameter from phase microscopy images (n=3 MP batches for each Span-80 

concentration; 150 MPs analyzed for each batch). 

5.2.4 Protein Loading and Release 

Degradable core-shell MPs and PEG-based MPs (45 mM DTT) were prepared. 

The mass of heparin MPs was 0.02 mg for both the degradable core-shell MPs and the 

heparin MPs. The number of degradable PEG-based MPs was matched to the number of 

degradable core-shell MPs. 90 ng of recombinant human BMP-2 or stromal cell-derived 

factor-α (SDF-1α) (R&D Systems) was loaded onto the MPs in a 0.1% bovine serum 

albumin (BSA) PBS solution in low-binding tubes, resulting in 4.5 μg protein/mg heparin 
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MP. MPs were incubated at 4°C on rotary for 2 or 24 hours, at which point they were 

centrifuged and the supernatant was analyzed using an enzyme-linked immunosorbent 

assay (ELISA; R&D Systems).  

Two techniques were used for loading core-shell MPs. In the first technique, 

heparin MPs were loaded with protein prior to encapsulation into the PEG shell (“pre-

fabrication load”; Figure 5.5A). In the second technique, core-shell MPs were formed and 

then loaded with protein (“post-fabrication load”; Figure 5.7A). Because small proteins 

are able to diffuse through PEG-DA networks [27], it was hypothesized that encapsulated 

heparin MPs would still be able to sequester protein, which was confirmed in pull-down 

studies. For “pre-fabrication load” studies, 1 mg heparin MPs were loaded at a 

concentration of 1.5 µg BMP-2/mg MP in a 0.1% BSA solution in low-binding tubes at 

4°C on rotary overnight. MPs were centrifuged and supernatant was removed and 

analyzed using an ELISA (R&D Systems) to calculate total BMP-2 loaded. Then, loaded 

heparin MPs were used to form degradable and non-degradable core-shell MPs. 

Degradable core-shell MP, core-shell MP, and heparin MP groups all contained 0.02 mg 

heparin MPs and were incubated in a 0.1% BSA solution in PBS at 37°C for seven days 

on a shaker plate. At days 1, 4, and 7, MPs were centrifuged and supernatant was 

removed for analysis and replaced with fresh 0.1% BSA solution. Supernatant was 

analyzed using an ELISA (R&D Systems). 

 For “post-fabrication load” studies, degradable core-shell and PEG-based MPs 

were fabricated. Degradable core-shell MP contained 0.02 mg heparin MPs. The number 

of PEG-based MP and core-shell MPs were matched. All MPs were loaded at a 

concentration of 4.5 µg BMP-2/mg MP in a 0.1% BSA PBS solution in low-binding 
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tubes at 4°C on rotary overnight. MPs were centrifuged and supernatant was removed 

and analyzed using an ELISA (R&D Systems) to calculate total BMP-2 loaded. 

Supernatant was replaced with a fresh 0.1% BSA solution in PBS and MPs were 

incubated at 37°C for seven days on a shaker plate. At days 1, 4, and 7, MPs were 

centrifuged and supernatant was removed for analysis and replaced with a fresh 0.1% 

BSA solution. Supernatant was analyzed using an ELISA (R&D Systems). 

5.2.5 ALP Activity Assays 

The C2C12 cell line was used to evaluate the ability of core-shell MPs to delivery 

bioactive BMP-2 after shell degradation, as C2C12 cells produce ALP in response to 

BMP-2 [340]. C2C12 cells were cultured at 37°C, 5% CO2 in DMEM with 4.5 g/L 

glucose, fetal bovine serum (FBS) (10% for growth media, 1% for assay media; 

Hyclone), 2 mM L-glutamine, 50 IU Penicillin and 50 μg/mL Streptomycin. For assays, 

cells were plated at 62,500 cells/cm
2
 in 96 well plates and were incubated for 6 hours to 

allow adherence before the assay was started. 

Microparticles were prepared for pre- or post-fabrication load experiments as 

described above and were sterilized by washing with 70% ethanol for 30 minutes, 

followed by 3 washes with PBS for 30 minutes each. For pre-fabrication studies, groups 

included pre-fabrication loaded and non-loaded degradable core-shell MPs, pre-

fabrication loaded and non-loaded core-shell MPs, and a soluble BMP-2 and a no BMP-2 

media control (Figure 5.5A). For post-fabrication studies, groups included post-

fabrication loaded and non-loaded degradable core-shell microparticles, loaded and non-

loaded degradable PEG-based MPs, and a soluble BMP-2 and no BMP-2 control (Figure 

5.7A). All MPs were incubated for 2.5 days prior to being added to cells for pre-
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degradation. This allowed MP shell degradation to occur during the three day cell assay 

(while degradation occurs throughout the entire time course, the majority of the PEG-

based MP degradation occurred between days 3-6 for these MPs; Figure 5.1C). All core-

shell and heparin MP groups had 0.02 mg of heparin and the degradable PEG-based 

control group had the same number of MPs as the core-shell group. Cells were cultured 

for 3 days and then media/MPs were removed.  

After media and MP removal, cells were washed twice with PBS. DdH2O was 

added to cells for 20 minutes and then cells subjected to a freeze-thaw cycle. Cells were 

then scraped from the 96-well plate and cell lysate solution was transferred to 1.7 mL 

tube. Cell lysate was sonicated for 20 minutes, then subjected to another freeze-thaw 

cycle. This was repeated once, then samples were centrifuged at 10,000 RCF for 5 

minutes and supernatant was used for analysis. For ALP activity, 50 μL sample was 

combined with 50 μL 1.5M 2-amino-2-methyl-1-propanol (Sigma-Aldrich), 50 μL 10 

mM magnesium chloride, and 50 μL 20 mM p-nitrophenol phosphate disodium salt 

hexahydrate (Sigma-Aldrich). For standards, p-nitrophenol (Sigma-Aldrich) was used. 

Samples were allowed to incubate for 2 hours and absorbance was read at 405 nm. DNA 

content was assessed with the CyQUANT Assay following the manufacturer’s 

instructions and using bacteriophage λ DNA to create a standard curve (ThermoFisher 

Scientific). The assay was read at excitation/emission of 480/520. 

5.2.6 Statistical Analysis 

All results are depicted as mean ± standard deviation. Analysis of Variance 

(ANOVA) was used to identify significant factors and interactions, then Tukey’s post hoc 

test (significance level p ≤ 0.05) was used to generate pairwise comparisons between 
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means of individual sample groups and determine statistically significant differences 

(Minitab 15 Statistical Software). 

5.3 Results 

5.3.1 PEG Shell Fabrication and Characterization  

At 0.7% Span-80, non- (no DTT), slow- (40 mM DTT), and fast- (45 mM DTT) 

degrading MPs had average diameters of 18.3±15.8, 70.0±49.0, and 44.6±36.1 µm, 

respectively, a range of about 52 µm. At 1.3 wt% Span-80, non-, slow-, and fast-

degrading MPs had average diameters of 11.1±7.3, 31.5±28.1, and 15.3±12.7 µm, a range 

of 20 µm. At 2.0 wt% Span-80, non-, slow-, and fast-degrading MPs had average 

diameters of 9.2±4.8, 13.4±11.0, and 23.2±22.3 µm, a range of 14 µm (Figure 5.1A).  

For degradation studies, DTT was incorporated into the network via Michael-

Type addition to accelerate hydrolytic degradation (Figure 5.1B). Slow-degrading MPs 

were observed to degrade in about 23 days, while fast-degrading MPs degraded in about 

8 days (Figure 5.1C). MPs were determined to have degraded if few (less than 10) or no 

MPs were visible via phase microscopy. 

 

Figure 5.1. PEG-based MPs with tunable size and degradation profiles. (A) PEG-based 

MPs of 0mM, 40mM, and 45mM DTT concentrations were fabricated with varying Span-
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80 surfactant  concentrations (*=significantly different than other groups with same DTT 

concentration; p<0.05, n=3 batches of MPs). (B) Cross-linking schematic for PEG-DA 

and DTT. DTT clicks into the PEG-DA via Michael-Type addition at the acrylate bonds, 

and accelerates hydrolysis of the ester bond and thus degradation of the network. (C) 

Degradation time course for slow- and fast-degrading MPs (40 and 45 mM DTT, 

respectively). Slow-degrading MPs degraded by day 23 and fast-degrading MPs degraded 

by day 8. Arrows indicate MPs (n=3 batches of MPs, scale bar = 100 μm). 

 

5.3.2 Core-Shell MP Fabrication and Characterization 

Core-shell MPs were fabricated by suspending heparin MPs (15-27% 

methacrylamide functionalization) of known mass in a precursor aqueous PEG-DA phase 

that was emulsified against mineral oil and then cross-linked via free radical initiated 

polymerization (Figure 5.2A). The size of core-shell MPs could be controlled by varying 

the concentration of Span-80 in the oil phase (Figure 5.1A). Heparin MPs appeared 

encapsulated inside PEG-based shell in phase microscopy images (Figure 5.2B) and 

encapsulation was confirmed using orthogonal views of three-dimensional image stacks 

from confocal microscopy (Figure 5.2C).  

 

Figure 5.2. (A) Core-shell MPs were formed via a water-in-oil emulsion. (B) Phase 

images of core-shell MPs. Arrows and arrowheads indicate the PEG-based shell and 
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heparin core, respectively. (C) Orthogonal view from 3D confocal image stacks 

confirmed encapsulation of heparin core (red, arrow) into PEG-based shell (green) (scale 

bar = 25 µm). 

 

As multiple heparin MPs are encapsulated in each PEG-based shell in this 

fabrication process, the number of heparin MPs per core-shell MP was determined in 

order to achieve known heparin dosages for subsequent cell studies. Using ImageJ, the 

number of heparin MPs per core-shell MP was determined and a linear correlation was 

found between the number of heparin MPs and the CSA of each core-shell MP (Figure 

5.3A). As the CSA of the core-shell MP increased, the number of heparin MPs increased 

(Figure 5.3A and B). The ratio of the number of heparin MPs:core-shell CSA also 

increased as the mass of heparin MPs in the pre-cursor was increased, evidenced by the 

increasing slope in graphs of heparin MPs vs. core-shell CSA (Figure 5.3A). A second 

linear correlation was found between mass of heparin MPs in precursor PEG phase and 

the ratio of heparin MPs:core-shell CSA (Figure 5.3C). Thus, for similarly sized core-

shell MPs, the number of heparin MPs increases as the mass of heparin MPs in the pre-

cursor PEG phase increases (Figure 5.3C and D).  
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Figure 5.3. The heparin content in core-shell MP is correlated to MP size and  mass of 

heparin MPs in the precursor PEG solution. (A) Number of heparin MPs correlated 

linearly with core-shell MP cross-sectional area for five masses of heparin tested. Note 

axes are different in 0.75 and 1 mg groups due to increases in MP size (n=3 batches of 

MPs for each mass). (B) Representative images of MPs fabricated with 1 mg of heparin 

ranging from 35-125 μm in diameter, noted above each image and pointed out by white 

arrows if more than one MP/image (PEG in green, heparin in red ; scale bar = 25 μm). 

(C) The ratio of heparin MPs/core-shell size increases as the mass of heparin MPs in 

precursor PEG phase is increased (n=3 batches of MPs for each mass). (D) 

Representative images of 0.1, 0.5, and 1 mg heparin MP encapsulated in PEG shell (scale 

bar = 25 μm).  

 

5.3.3 Core-Shell MP Degradation 

 Hydrolytic degradation of PEG-DA MPs can be accelerated by adding DTT into 

the network, which enhances the susceptibility to hydrolysis of the ester bond [60]. By 

varying the concentration of DTT, degradation rate of PEG-based MPs could be 

temporally modulated, allowing a range of degradation time between 8 and 23 days 

(Figure 5.1C). For core-shell MPs, DTT was incorporated into the PEG-DA network at a 
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45 mM concentration (corresponding to a molar ratio of 1.21:1 PEG-DA:DTT) and the 

shell of the core-shell MPs were observed to degrade in approximately six days using 

phase microscopy. In addition, the non-degradable heparin MP core was released and 

present after shell degradation (Figure 5.4).  

 

Figure 5.4. Degradation of PEG-based shell and release of heparin MP core from core-

shell MPs.  Core-shell MPs are present through day 5 (days 1-5, arrows), at which point 

they begin to degrade and release heparin MPs (days 5 and 7, arrowheads). Core-shell 

MPs are fully degraded by day 7. 

 

5.3.4 Pre-Fabrication Load Bioactivity Studies 

 For pre-fabrication load studies, heparin MPs loaded 98.0+0.1 % of BMP-2. 

Degradable and non-degradable core-shell MPs were fabricated with loaded heparin MPs 

and release of BMP-2 was monitored over seven days. As BMP-2 binds tightly to heparin 

MPs, very little BMP-2 was released over the course of seven days (5.8+3.2%, 7.9+4.3%, 

and 2.5+1.7% for degradable core-shell, core-shell, and heparin MPs, respectively; 

Figure 5.5B). Degradable core-shell microparticles induced similar C2C12 ALP activity 

as the soluble control, while core-shell microparticles induced significantly lower activity 

after three days (85.4+19% vs. 9.0+4.8% of soluble control, respectively; Figure 5.5C). 

No signal was observed for groups without BMP-2, and an elevated DNA content was 

observed in all groups subjected to BMP-2 as compared to those without BMP-2. No 

trends in DNA content were observed between groups. 
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Figure 5.5. Degradable (Deg) core-shell MPs modulate loaded heparin MP delivery to 

cells. (A)  Experimental set-up for pre-fabrication loaded core-shell MPs. (B) Cumulative 

percent released of loaded BMP-2 for deg core-shell, core-shell, and heparin MP groups 

(&=significantly different from heparin MP group, p<0.05, n≥3). (C) Normalized ALP 

activity for deg core-shell, core-shell, and soluble BMP-2 groups (non-loaded groups 

showed no signal; *=significantly different from core-shell MP group, p<0.05, n=4). 

 

5.3.5 Post-Fabrication Load Protein Sequestration Studies 

  When degradable core-shell MPs were loaded with BMP-2 and SDF-1α, 

sequestration of proteins was temporally delayed. At two hours, significantly more SDF-

1α remained in solution after incubation with core-shell MPs than with heparin MPs 

(26.8+7.1% and 2.3+1.8%, respectively). However, by twenty-four hours similar 

amounts of protein were found for each group (6.0+0.7% and 1.2+0.4%, respectively; 

Figure 5.6A). BMP-2 behaved similarly, with significant differences in sequestration 

observed at 2 hours (47.8+2.4% and 15.2+4.6% remaining for core-shell and heparin 
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MPs, respectively) but similar levels of sequestration by twenty-four hours (10.7+1.4% 

and 9.0+1.2% remaining for core-shell MPs and heparin MPs, respectively; Figure 5.6B). 

In both cases, no protein sequestration was observed in the PEG-based shell group. All 

results are normalized to the soluble control group. These studies indicate that it is 

possible to sequester protein through the PEG-based shell of core-shell MPs, but that 

sequestration is temporally delayed. Thus, for all post-fabrication loading cell studies, a 

24 hour loading time was used. 

 

Figure 5.6. Core-shell MPs temporally modulate protein sequestration. Protein pull-down 

studies with growth factors (A) SDF-1α and (B) BMP-2. Graphs show percent of protein 

remaining in solution (i.e. percentage of protein not sequestered by MPs) normalized to 

soluble protein controls. (*=significantly different from heparin MP group, 

**=significantly different from degradable core-shell; p<0.05, n≥3). 

 

5.3.6 Post-Fabrication Load Bioactivity Studies 

 Loading studies indicated that degradable core-shell MPs loaded 93.5+1.0% of 

BMP-2 while degradable PEG MPs loaded only 11.5+14.6% as compared to the soluble 

control (Figure 5.7B). Core-shell MPs released only 2.7+1.6% of loaded BMP-2 over 

seven days (Figure 5.7C). Degradable core-shell MPs induced ~7-fold higher C2C12 

ALP activity than the soluble control, while no detectable signal was observed for the 
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loaded degradable PEG-based MP group (Figure 5.7D). No signal was observed for 

groups without BMP-2.  

 

 

Figure 5.7. Post-fabrication loading allows for delivery of loaded heparin MPs. (A) 

Experimental set-up for post-fabrication loaded MPs. (B) Post-fabrication loading 

resulted in nearly 100% loading in deg core-shell MP group and less than 10% loading in 

deg PEG-based MP group. (C) Cumulative mass of BMP-2 released for deg core-shell 

and deg PEG-based MPs for seven days. (D) Normalized ALP activity for deg core-shell 

MP, deg PEG-based MP, and soluble groups. “ND” indicates not detectable (non-loaded 

groups showed no signal; *=significantly different from deg core-shell group; p<0.05, 

n=4). 

 

5.4 Discussion 

In these studies, core-shell MPs were designed to sequester, isolate and protect, 

and deliver protein on a user-defined timescale.  First, a hydrolytically degradable PEG-

based shell was required in order to release the protein-laden heparin core. Thus, DTT 

was incorporated into the PEG-DA aqueous phase via a click reaction, as DTT can 
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enhance the susceptibility of the resulting ester bond to hydrolytic degradation [60].  

Slow- and fast-degrading MPs were formed by varying the concentration of DTT in the 

PEG-DA network. Because DTT links two PEG-DA chains via their acrylate groups, 

these acrylates are then no longer available for cross-linking in free radical initiated 

polymerization, which can result in longer chain lengths and thus larger mesh size 

(Figure 5.1B). This was likely the cause of larger MPs observed in previous work that 

utilized this technique, as it was shown that increasing the concentration of DTT resulted 

in increased MP size [221]. While those studies employed a water-in-water emulsion 

technique [221], a water-in-oil emulsion technique was used in these studies, as MP size 

could be modulated independently of DTT content by varying surfactant concentration 

(Figure 5.1A). First, for each type of MP (non-, slow-, and fast-degrading), increasing 

amounts of Span-80 resulted in a smaller MP diameter. Additionally, as Span-80 

concentration was increased, the range in average MP diameter between the three types 

of MPs tightened. With the lowest amount of Span-80 (0.7% wt%), the diameter of non- 

and fast-degrading MPs was the most variable (a range of 52 µm) and showed similar 

trends to previous work [221], with increasing sizes observed with increasing DTT 

concentration. As Span-80 increased, however, MP size could be controlled with less 

dependence on DTT concentration, as diameter ranges dropped to 20 and 15 µm for 

higher concentrations of Span-80. These results indicated not only that Span-80 could be 

used to tune MP size within one DTT concentration, but also that concentration of Span-

80 could be used to modulate MP size independently of DTT concentration (especially at 

higher wt%). Thus, non-, slow-, and fast-degrading PEG-based MPs of different sizes 
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could be formed by varying Span-80 concentrations, allowing size to be controlled 

independently of DTT concentration. 

Degradation studies showed that slow- and fast-degrading MPs degraded at 8 and 

23 days, respectively (Figure 5.1C). This indicates that by varying the DTT concentration 

in the MPs, the degradation rate could be varied, providing ample room for fine-tuning 

these concentrations to achieve MPs that degraded between 8-23 days or after 23 days. 

As DTT reacts with functional acrylate groups in the PEG-DA network, there is a limit to 

the amount of DTT, dependent upon the mass of PEG-DA, that can be incorporated into 

the PEG-DA network before MPs can no longer be formed (data not shown). In these 

studies, the fast-degrading PEG MPs contained the maximum amount of DTT that could 

be added to the network and still be crosslinked, indicating that the mass of PEG-DA 

would have to be adjusted in order to add more DTT and achieve faster degradation rates. 

However, within these limits, PEG-based MPs with tunable size and degradation profiles 

were developed, and the fast-degrading MPs with 2.0% Span-were used for the shell of 

core-shell MPs. Overall, a degradable PEG-based shell was designed to degrade over 

time in aqueous conditions, allowing shell degradation to occur after delivery to a 

biological system. 

Previously, a variety of fabrication techniques have been employed to make core-

shell MPs, including double-emulsion and layer-by-layer coating. While the double 

emulsion fabrication technique is a convenient, one-batch reaction, it requires two 

immiscible phases [238,239,242,341], restricting the chemical properties of the materials 

that can be used. Layer-by-layer coating can provide control over shell size, but requires 

layers to interact with each other through electrostatic interactions [246], again narrowing 
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material choice to those with positive or negative charges. Because the heparin-PEG 

core-shell MPs presented here required use of specific materials, each having a separate 

function, a fabrication technique that permitted greater flexibility in material choices was 

required. Thus, a re-emulsification technique was chosen [241] for core-shell MP 

fabrication to allow use of heparin and PEG-based materials. In this method, pre-formed 

heparin MPs were re-emulsified in a precursor PEG phase (Figure 5.2), a process mild 

enough to maintain protein bioactivity when protein was loaded onto heparin MPs pre-

fabrication (loading of heparin MPs prior to re-emulsification; Figure 5.5C).  

Core-shell MP characterization revealed that the number of heparin MPs was 

linearly correlated to the CSA of core-shell MPs, and that increasing the mass of heparin 

in the precursor PEG phase increased the number of heparin MPs encapsulated (Figure 

5.3). Thus, although a heterogeneously-sized population of MPs was formed in each 

batch, the number of heparin MPs per core-shell MP was tunable and predictable. If more 

homogenously-sized MPs per batch are required for future experiments, this re-emulsion 

technique could be translated to a microfluidic device to increase core-shell MP size 

homogeneity [242], as a PEG-based MPs have previously been fabricated on microfluidic 

devices with a variety of cross-linking techniques [342–344].  

 Recently, it has been shown that hydrolytic degradation can be enhanced in PEG-

DA hydrogels by integrating DTT into the polymeric network [60].  In this work, slow- 

and fast-degrading MPs were developed by varying the amount of DTT added to the 

aqueous PEG phase (Figure 5.1C). Previously, DTT has been incorporated into PEG-DA 

MPs using a water-in-water emulsion technique, but it was shown that increasing the 

concentration of DTT resulted in increased MP size, likely due to increased chain length 
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and consequently, a larger mesh size [221]. To overcome this limitation, a water-in-oil 

emulsion technique was used, as MP size could be modulated independently of DTT 

content by varying surfactant concentration (Figure 5.1A).  Thus, tunable degradation and 

controllable size of the PEG-based MP shells was achieved, which was then applied to 

core-shell MPs to enable shell degradation in approximately six days (Figure 5.4).  

 In these experiments, core-shell MPs were loaded using two different techniques.  

In the first, a “pre-fabrication loading” technique (Figure 5.5A), heparin MPs were 

loaded with BMP-2 prior to encapsulation into the PEG-based shell. Using the pre-

fabrication loading technique may be advantageous because the core-shell fabrication 

technique does not require use of solvents and heparin can protect proteins from 

denaturation [58,338,339], thus promoting maintenance of bioactivity of loaded proteins. 

Furthermore, pre-fabrication loading could allow for loading of proteins in both the 

heparin core and PEG-based shell in future experiments for dual-release applications. 

When core-shell MPs were pre-fabrication loaded with BMP-2, degradable and non-

degradable core-shell MPs released very little protein over the course of seven days 

(5.8+3.2%, 7.9+4.3%, and 2.5+1.7% for degradable core-shell, core-shell, and heparin 

MPs, respectively; Figure 5.5B). These results are comparable to what has been seen in 

previous studies when heparin MPs loaded with 1000 ng BMP-2/mg heparin MPs 

showed less than 10% release of BMP-2 after 30 days [59]. 

Because so little protein is released from the core-shell MPs, only degradation of 

the PEG-based shell and release of the protein-laden heparin core would be able to 

initiate a response from C2C12 cells. This necessitates the ability of protein to interact 

with cell receptors while still bound to heparin. Here and in past studies [59], it was 
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evident that BMP-2 could interact with cells while bound to the heparin MPs (Figure 

5.5C and 5.7D), possibly with greater efficiency, as ALP activity was higher in groups 

with BMP-2 loaded on core-shell MPs than soluble BMP-2 (Figure 5.7D). In addition, 

evidence from in vivo and in vitro studies indicates that many other proteins, such as 

IHH,  FGF, and WNT can also interact with their cell surface receptor while bound to 

heparin or heparan sulfate, potentially with enhanced affinity [175,182], indicating that 

this core-shell technology is versatile and can be used for delivery of a variety of heparin-

binding proteins. 

Pre-fabrication loaded degradable core-shell MPs were able to initiate a cell 

response that was similar to the response initiated by the soluble control, unlike the non-

degradable control group, which demonstrated limited cellular response (Figure 5.5C). 

This is distinctly different than many other delivery systems, which generally have an 

unavoidable burst release prior to more sustained delivery of protein [52,234,237]. Here, 

protein release from a loaded vehicle was prevented for over three days in the non-

degradable group, strongly supporting the idea that in this system, the majority of protein 

presentation can only occur after shell degradation and release of the protein laden core. 

Additionally, when core-shell MPs were allowed only a two day pre-degradation period 

(rather than the three days allotted for the experiment above) prior to placement on cells, 

the response initiated by the degradable core-shell MPs was lower than the soluble 

control, indicating that the degradation state of the shell does temporally control cell 

response (Figure E.9).  

By tuning the degradation rate of the PEG-based shell, it would be possible to 

further adjust the delay period between MP delivery and protein presentation, beneficial 
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for applications that require delivery of different proteins at different points in time. 

Specifically, optimization of cellular differentiation processes such as chondrogenesis for 

cartilage regeneration [37] or myogenesis for muscle regeneration [345] may benefit 

from such a technology that promotes complex temporal coordination of protein 

presentation. In addition, tissue repair processes such as wound healing and 

vascularization could benefit from release vehicles with tight temporal control over 

protein release [3]. 

 For the second loading technique employed with these core-shell MPs, “post-

fabrication loading,” core-shell MPs were formed and then loaded with BMP-2 by 

diffusion through the outer shell (Figure 5.7A). First, protein sequestration studies were 

conducted to determine if protein diffusion through the PEG-based shell could occur, 

using two different model proteins, SDF-1α and BMP-2, chosen because they possess 

molecular weights (~7-16 kDa) that represent small to average size for many growth 

factors, including but not limited to BMP-2, IHH, FGF-2, and TGFβ-1 (molecular 

weights ranging from 12-20 kDa, R&D Systems website [346]). Interestingly, a slight 

temporal delay in sequestration of both proteins was observed in the core-shell MP 

groups as compared to the heparin MP control, indicating that the PEG-based shell 

delayed diffusion of these proteins. These findings are similar to previous studies that 

have shown that protein diffusion is slowed but not inhibited by a PEG-DA hydrogel 

network [27,347,348]. For example, one study found that myglobin (17 kDa, similar in 

size to the proteins used in this study) was able to diffuse through both 2 and 10 kDa PEG 

networks, but at a slower rate in the 2 kDa network [27]. (NB: Because PEG may protect 

protein from denaturation in aqueous solution [238], protein levels were observed to be 
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greater than 100% of soluble control (Figure 5.6)). Thus, for the rest of post-fabrication 

load studies, core-shell MPs were incubated with protein for 24 hours to ensure complete 

protein loading.  

After loading with BMP-2, very little release was observed in post-fabrication 

loaded core-shell MPs over the course of 7 days (2.7+1.6% of loaded BMP-2), similar to 

what was seen in pre-fabrication loading release studies. In a proof-of-principle study, 

when incubated with C2C12 cells, post-fabrication loaded degradable core-shell MPs 

induced ~7-fold higher C2C12 ALP activity than the soluble control (Figure 5.7D), 

indicating that these MPs can effectively sequester and then re-present growth factors to 

cells. The degradable PEG-based MP control, in which no signal was detected, was used 

to ensure that cell response was not due to free BMP-2 caught in the PEG network during 

loading. Several studies have shown the potential for heparin-based materials to sequester 

endogenous proteins [40,44,45,349,350], but none of these have included a temporal 

control over re-presentation. Previously, core-shell MPs have been used to selectively 

sequester proteins through a size-exclusive shell to concentrate biomarkers [47–50], but 

few, if any, technologies can sequester, physically isolate, and then re-release protein to 

the external environment. As the core-shell MPs presented in this work has the potential 

to achieve this, it is possible that this technology can enhance temporal control over 

protein presentation in the cellular microenvironment for future tissue engineering 

applications.  

The core-shell MPs in this work were designed to degrade in approximately 6 

days, which is an appropriate timeframe for several different applications involving the 

ATDC5 cells used in Chapter 4. In both monolayer and spheroid culture, ATDC5 cells 
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began strongly expressing differentiation markers at days 4-12 [309] (Figures E.7 and 8). 

In order to sequester and re-deliver cell-secreted protein to ATDC5 cells, two different 

scenarios were envisioned. In the first, core-shell MPs would be incubated with ATDC5 

cells for approximately three days (shell would be intact) to sequester cell-secreted 

proteins. The three day period would be chosen to achieve maximum binding of desired 

proteins, and days 6-9 would be used for initial tests as many proteins are likely released 

during this time to encourage cell differentiation based on increased gene expression 

levels. Then, intact and saturated core-shell MPs would be removed and placed on a 

second population of cells, either ATDC5 cells or another cell type, to enhance 

differentiation as the shell degraded between days 3-6 and released protein-laden heparin 

MPs. In the second scenario, core-shell MPs would be used to sequester protein from 

ATDC5 cells at early timepoints (for example, days 3-6) to effectively halt or restrict 

differentiation until shell degradation (days 6-9), at which point protein-laden heparin 

MPs would be re-delivered to accelerate or reinitiate differentiation. Thus, the ~6 day 

degradation timeframe was chosen specifically for ATDC5 cell differentiation, but could 

be modified for other applications (Figure 5.1).  

In this system, degradable core-shell MPs enabled triggered or temporally off-set 

release of protein-laden heparin MPs through hydrolytic degradation. While a 

hydrolytically degradable system is advantageous because it permits a user-defined 

degradation rate and release of cargo that is initiated simply by the presence of water (and 

not an external stimuli), it is limited by its inability to respond to conditions in the 

cellular microenvironment or a user-defined stimuli. Other systems can overcome these 

limitations. For example, hydrogels can be engineered to degrade or deform via enzymes, 
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light exposure, change in pH, ultrasound exposure, temperature changes, or magnetic 

fields [351–354]. Materials that degrade due to enzymes, pH changes, or temperature 

changes can be useful due to their responsiveness to the cellular microenvironment. For 

example, as the concentration of a specific enzyme controls the release profile of 

encapsulated cargo in an enzymatically degradable hydrogel, release only occurs under 

particular conditions [353]. While beneficial for specific applications, these types of 

systems would not have widespread applicability. Ultrasound, light-mediated, and 

magnetic-mediated release are beneficial because they allow user-defined controlled 

release that can be varied in time and modified throughout the course of delivery. 

Ultrasound degradation usually functions by temporarily breaking reversible bonds; light-

mediated degradation by directing UV, visible, or IR light in specific spatial locations on 

a hydrogel to break photolabile bonds; and magnetic-mediated release by applying a 

magnetic force to cause a deformation leading to increased water movement through the 

gel [351–354]. Negative aspects of these techniques are the requirements for light or 

magnetic field penetration (not always possible for in vivo applications), the need for 

specialized equipment, and the dependence of the system on an outside user. Still, in the 

future many of these techniques could be applied to enhance control over shell 

degradation in the core-shell MPs presented in this work.  

5.5 Conclusions 

In these experiments, heparin-PEG core-shell MPs were fabricated using a re-

emulsification technique to encapsulate pre-formed heparin MPs within a degradable 

PEG-based shell, thus creating MPs with tunable amounts of encapsulated heparin. In 

pre-fabrication load studies with BMP-2, degradable core-shell MPs initiated enhanced 
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ALP activity as compared to non-degradable core-shell MPs, indicating these MPs can be 

used to temporally modulate protein presentation to cells. In addition, post-fabrication 

loading studies demonstrated that core-shell MPs were able to sequester BMP-2 through 

the PEG shell and then re-present that protein to cells to initiate enhanced ALP activity. 

Thus, the goals of developing a dynamic core-shell MP technology that preserved protein 

bioactivity, delivered cargo in a temporally controlled manner with no burst release, and 

sequestered and re-delivered proteins were achieved in this system.  In the future, 

because the post-fabrication loading technique allows fully fabricated core-shell MPs to 

sequester protein, it could be extended to sequestration and release of cell-secreted 

proteins.  Overall, the multifunctional core-shell technology presented here has the 

potential to temporally modulate the presentation of growth factors in the local cellular 

microenvironment and is therefore a unique tool to explore the emerging area of cell-

secreted protein manipulation for enhancement of tissue regeneration. 
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CHAPTER 6 

DEGRADABLE HEPARIN-PEG-BASED MPS FOR PROTEIN 

SEQUESTRATION AND RELEASE 

6.1 Introduction 

 Heparin has frequently been integrated into controlled delivery bulk hydrogel 

systems due to its ability to attract and protect protein [9,174,338,339]. Integration of 

heparin into microparticle (MP)-based delivery systems could be particularly beneficial, 

as MPs are injectable and have a high surface area to volume ratio that can assist in 

efficient protein release [211], and several techniques have been explored. A common 

method includes layer-by-layer coating of heparin onto pre-formed MPs [222–225]. 

While this method has been used to deliver proteins like TGFβs and BMPs to 

successfully enhance cell differentiation [222–225], the layer-by-layer approach requires 

alternating layers of positively and negatively charged materials, which can limit the 

choices of materials used to fabricate MPs and thereby limit user-defined control over 

other MP properties, such as size and degradability. In addition, as electrostatic 

interactions are the only forces responsible for maintaining heparin in the delivery 

vehicle, premature release of heparin into the cellular microenvironment could occur. To 

combat these problems, heparin has been functionalized with methacrylamide and 

covalently cross-linked into MPs [59]. While these non-degradable MPs showed high 

loading efficiency of BMP-2, very little release (~10-15% of loaded BMP-2) was 

observed over the course of 30 days [59]. Thus, development of heparin-based MPs with 

controlled and tunable protein release remains a challenge.  
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 Protein release can be more precisely tuned in degradable MPs, as degradation 

rate can be user-controlled, eliminating reliance solely on diffusion as the main 

mechanism of protein release [10]. In addition, degradable materials are preferable for in 

vivo applications, as they do not require surgical removal [10]. Recently, our lab 

developed heparin-PEG-based MPs using 4-arm PEG acrylate, thiolated heparin, and 

DTT [58]. The MPs were cross-linked via Michael Type addition, and DTT was included 

to enhance MP degradability by accelerating hydrolytic degradation of the ester bond in 

the acrylate group [58,60]. This method enabled MP degradation and a higher percent 

release of loaded BMP-2 as compared to what was observed previously for non-

degradable, covalently cross-linked heparin MPs [58,59]. However, as these MPs were 

only cross-linked via Michael-Type addition of DTT and heparin, both of which 

accelerated MP degradation, an increase of heparin content increased degradation rate of 

the MPs [58].  

 Thus, this work presents an alternative strategy to fabricate degradable heparin-

PEG-based MPs with enhanced control over degradation rate and incorporation of higher 

concentrations of heparin. Degradable MPs were fabricated by integrating DTT into a 

PEG-DA and heparin MAm network that was subsequently cross-linked via free-radical 

initiated polymerization. MPs were characterized to assess heparin content and 

degradation rate, and loading and release studies were conducted with histone, a 

positively charged protein. Finally, MPs were cultured with ATDC5 cells to investigate 

1) sequestration and release of cell-secreted protein and 2) degradation of MPs within 

dense cell aggregates. Overall, these studies indicate that degradable heparin-PEG MPs 
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have the potential to be used for protein loading and release in tissue engineering 

applications.   

6.2 Materials and Methods 

6.2.1 Materials 

Heparin MAm and 3.4 kDa PEG-DA were fabricated as described in Section 4.2.1. 

6.2.2 MP Fabrication and Degradation Studies 

For heparin-PEG-based MPs, an aqueous phase of PEG-DA was incubated with 

DTT (Sigma-Aldrich) in PBS for 30 minutes at 37°C to allow a click reaction between 

DTT and the acrylate groups on PEG-DA. Then, heparin was added to the aqueous phase 

for an additional 30 minute incubation. For MPs without heparin, called PEG-based MPs, 

PEG-DA and DTT were incubated for 1 hour. The amounts of heparin and PEG added 

for each MP formulation resulted in a total polymer content of 12 wt% and are listed in 

Table 6.1. DTT concentrations for each formulation are also listed in Table 6.1. After 

incubations, Irgacure 2959 Photoinitiator (Ciba) was added to the aqueous phase to 

achieve a final concentration of 0.05 wt%. The aqueous phase was then emulsified with a 

homogenizer against a mineral oil phase (light, white; Ameresco) with 0.3-1.3% (v/v) 

Span-80 (sorbitan monooleate; TCI) at a 1:16.7 ratio aqueous:oil phase, nitrogen purged 

for 1 minute, then cross-linked under UV light (approximately 10.5 mW/cm
2
) in a 35x10 

mm petri dish for 10 minutes. MPs were washed with water. 100% heparin MPs were 

prepared as described in Section 4.2.2.  
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Table 6.1. Amounts of heparin, PEG and DTT for each MP formulation.  

Name of MP 

Formulation 

% 

Heparin 

Mass PEG-

DA (mg) 

Mass Heparin 

MAm (mg) 

Concentration 

DTT (mM) 

PEG-based MPs 0 42.4 0 32.5 

10% Heparin MPs 10 38.1 4.2 30 

20% Heparin MPs 20 33.9 8.5 27 

30% Heparin MPs 30 29.7 12.7 23.5 

40% Heparin MPs 40 25.4 17.0 20 

For PEG-based MPs used for ATDC5 aggregate incorporation, MPs were formed 

as described in Section 5.2.2. MPs had 0 (non-degrading), 40 (slow-degrading) or 45 

(fast-degrading) mM DTT.  

For MP degradation studies in aqueous solutions, 0.1 mg/mL of MPs was 

incubated in 1 mL PBS unless another concentration is noted. MPs were incubated on 

rotary (65 RPM; Barnstead Lab-Line, Multipurpose Rotor) at 37°C. 30 μL aliquots of MP 

solution was taken every 2-3 days and imaged using phase microscopy. MPs were 

determined to be degraded when few (less than10 MPs) or no MPs were visible. 

6.2.3 Alcian Blue Staining and Surfen Assay 

 PEG-based MPs and 10, 20, 30, and 40% heparin MPs were stained with 1% 

alcian blue 8GX (Sigma-Aldrich) in 0.1 M HCl for 30 minutes. Then, MPs were 

centrifuged at 10,000 RCF and stain was removed. MPs were resuspended in PBS, 

centrifuged again, and PBS was removed. This was repeated until the supernatant was 

clear. MPs were then imaged on phase microscopy.  

 For surfen studies, 0.025 mg/mL PEG-based MPs and 10, 20, 30, 40 and 100% 

heparin MPs were incubated with 10 µM surfen in PBS. 100 uL of the MP-surfen 
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solution was added to a 96 well plate, and an area-scan fluorescence reading was taken at 

excitation/emission 320/460 after 3 hours.  

6.2.4 Histone Loading and Release Studies 

 10% heparin MPs were used for maximum loading studies. 0.1 mg MPs were 

incubated with 6, 8, 10, 15, 30, 60, 150, and 200 µg histone (Sigma-Aldrich) overnight 

on rotary at 4°C. MPs were then centrifuged and supernatant was analyzed using a Pierce 

BCA protein assay according to the manufacturer’s instructions (ThermoFisher 

Scientific). BSA protein was used to construct the standard curve and absorbance was 

read at 562 nm. For loading and release studies, 0.1 mg PEG-based MPs and 10, 20, 30, 

and 40% heparin MPs were loaded with 20 µg of histone overnight on rotary at 4°C. MPs 

were then centrifuged at 10,000 RCF and supernatant was analyzed to determine loading 

efficiency. Fresh PBS was added to the MPs and MPs were incubated on a shaker plate 

(65 RPM; Barnstead Lab-Line, Multipurpose Rotor) at 37°C for 7 days, with timepoints 

taken at days 1, 4, and 7. For each timepoint, MPs were centrifuged, supernatant was 

collected for analysis, and fresh PBS was added to the MPs. Supernatant was analyzed 

using a Pierce Coomassie protein assay according to the manufaturer’s protocol 

(ThermoFisher Scientific). A standard curve was constructed with histone and 

absorbance was read at 595 nm. 

6.2.5 Transwell MP Studies 

 ATDC5 cells were expanded and prepared for transwell culture as described in 

Section 4.2.3. Mineralization media was used for all studies (composition described in 

Section 4.2.3). At day 6 in transwell culture, transwells with 0.1, 1, and 3 mg 10% 
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heparin or PEG-based MPs were added to either well plates with cells or well plates with 

media only. After an overnight incubation in a cell culture incubator (37°C, 5% CO2), 

MPs were removed from the transwell inserts, transferred to low-binding microcentrifuge 

tubes, centrifuged at 10,000 RCF, and supernatant was removed. MPs were rinsed once 

with PBS, then incubated at 37°C on a shaker plate (65 RPM; Barnstead Lab-Line, 

Multipurpose Rotor) for 2 days. MPs were then centrifuged at 10,000 RCF, and 

supernatant was analyzed using a Coomassie Protein assay (see Section 6.2.4).  

6.2.6 Incorporation of PEG-based MPs into ATDC5 Spheroids 

 ATDC5 cells were prepared for spheroid culture and MPs were incorporated into 

spheroids as described in Section 4.2.3. Non-, slow-, and fast-degrading PEG-based MPs 

were incorporated into ATDC spheroids at a 3:1 MP:cell ratio and cultured on rotary 

culture in mineralization media for 21 days. At days 1, 7, 14, and 21, spheroids were 

collected for histological analysis. Spheroids were sectioned, stained with H&E, and 

imaged as described in Section 4.2.5.   

6.3 Results 

6.3.1 Heparin Content in Heparin-PEG-based MPs 

 PEG-based MPs and 10, 20, 30, and 40% heparin MPs were fabricated (Figure 

6.1).  
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Figure 6.1. Cross-linking scheme for polymeric network in heparin-PEG-based MP 

fabrication. DTT is clicked into the PEG-DA network at the acrylate bond (blue circle), 

and heparin MAm and PEG-DA are cross-linked via free-radical initiated polymerization 

(green circle).  

To validate that heparin had been cross-linked into the polymer network, MPs were 

stained with alcian blue, a stain specific for GAGs. All MPs fabricated with heparin 

stained blue, while PEG-based MPs did not (Figure 6.2A). Surfen, a small molecule that 

when bound to heparin emits a fluorescent signal [355] (see Appendix A), was incubated 

with PEG-based MPs and 10, 20, 30, 40, and 100% heparin MPs and fluorescence 

intensity increased as heparin content increased for 10, 20, and 30% heparin MPs, then 

plateaued for 40 and 100% heparin MPs. PEG MPs showed little fluorescent signal 

(Figure 6.2B).  
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Figure 6.2. Heparin-PEG-based MPs can be fabricated with varying amounts of heparin. 

(A) 10, 20, 30, and 40% heparin MPs and PEG-based MPs (from left to right) were 

stained with Alcian Blue (scale bar = 50 µm). (B) Fluorescence intensity after incubation 

with surfen for MPs of varying amounts of heparin.  

6.3.2 Degradation of Heparin-PEG-Based MPs 

 Heparin-PEG-based MPs were formed with the maximum amount of DTT that 

still permitted MP fabrication (Table 6.2). MPs degraded within 7-19 days,  

Table 6.2. DTT concentration and degradation rate for varying heparin contents in 

heparin-PEG-based MPs.  

% Heparin 
Molar Ratio 

PEG:DTT 

Degradation 

Time (days) 

0 1.3 14-17 

10 1.3 7-9 

20 1.2 7-9 

30 1.2 17-19 

40 1.2 17-19 

depending on the amount of heparin and DTT in the polymeric network (Table 6.1, 

Figure 6.3). 10% heparin MPs were incubated at 0.1, 1, and 3 mg/mL, and degradation 
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was dependent on initial MP concentration. MPs at 0.1 mg/mL degraded between 4-6 

days, at 1 mg/mL between 11-14 days, and at 3 mg/mL between 14-17 days (Figure 6.4).  

 

Figure 6.3. Degradation of PEG-based MPs and 10, 20, 30, and 40% heparin MPs. 10 and 

20% heparin MPs degraded between days 7-9, 30-40% heparin MPs between days 17-19, 

and PEG-based MPs between days 14-17. White arrows point out MPs in each image. In 

images with many MPs, only a few are pointed out as examples (scale bar 100 µm). 
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Figure 6.4. Degradation of 10% heparin MPs at 0.1, 1 or 3 mg MPs/mL initial 

concentration. MPs at 0.1 mg/mL degraded between 4-6 days, MPs at 1 mg/mL between 

11-14 days, and MPs at 3 mg/mL between 14-17 days.  

6.3.3 Loading and Release of Histone from Heparin-PEG-Based MPs 

 As 10% heparin MPs were loaded with increasing amounts of histone, a plateau 

was reached at 35 µg histone/0.1mg MP (Figure 6.5A). This corresponds to a max 

loading of 3500 µg histone/mg heparin. PEG-based MPs and 10, 20, 30, and 40% heparin 

MPs were loaded with histone at a 100 µg histone/0.1 mg MP ratio, or 10,000 µg 

histone/mg heparin. Less histone remained in solution, indicating that more histone was 

bound to MPs, as heparin content in the MP increased (Figure 6.5B). 

 

Figure 6.5. Heparin-PEG MP loading of histone. (A) 0.1 mg of 10% heparin MPs showed 

a max loading of 35 µg histone. (B) 10, 20, 30, and 40% heparin MPs show increasing 
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binding capacity as heparin content increases (*=significantly different than 10% heparin 

and PEG-based MP groups, p<0.05). 

 PEG-based MPs and 10, 20, 30, and 40% heparin MPs were loaded with 20 µg 

histone/0.1 mg MP and subsequent histone release was monitored for seven days. All 

MPs that contained heparin loaded about 80% of histone in solution, while PEG-based 

MPs only loaded about 10% (Figure 6.6A). All heparin containing MPs released protein 

over the course of seven days, and the majority of release occurred between days 1-3. By 

day 7, cumulative histone release was 33±1.2% for 10% heparin MPs, 26±3% for 20% 

heparin MPs, 8.1±3.4% for 30% heparin MPs, and 12±2% for 40% heparin MPs (Figure 

6.6B). 

Figure 6.6. Heparin-PEG MP loading and release of histone. (A) Percentage of histone 

loaded onto 10, 20, 30, and 40% heparin MPs and PEG-based MPs, normalized to a 

soluble histone control. (B) Release of histone reported as the percentage of histone 

release relative to what was loaded over the course of seven days (*=significantly 

different from all other groups, p<0.05). 

6.3.4 Sequestration and Release of Proteins in ATDC5 Transwell Studies 

 10% heparin MPs or PEG-based MPs incubated with ATDC5 cells or in media 

alone released protein in a mass-dependent manner. For 0.1 mg of MPs, about 3 mg 

protein was released, for 1 mg MPs, 5-8 mg of protein was released, and for 3 mg MPs, 

8-10 mg of protein was released (Figure 6.7).  
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Figure 6.7. Total release of protein from varying masses of 10% Heparin and PEG-based 

MPs incubated with ATDC5 cells or in media alone after two days of MP incubation in 

PBS. 

6.3.5 Incorporation of Degradable PEG-Based MPs into ATDC5 Spheroids 

 As a proof-of-principle study, fast- (45 mM DTT), slow- (40 mM DTT) and non- 

(0 mM DTT) degrading PEG-based MPs were incorporated into ATDC5 spheroids and 

degradation was monitored.  During histological processing, PEG MPs fall out of the 

spheroid matrix and leave behind holes (arrows, Figure 6.8). From images, it was 

observed that fast-degrading MPs degraded in 1-7 days, slow-degrading MPs degraded in 

7-14 days, and non-degrading MPs did not degrade throughout the course of culture 

(Figure 6.8).  
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Figure 6.8. Degradation of PEG-based MPs in ATDC5 spheroids. Fast-degrading MPs 

(45 mM DTT) appeared to degrade between days 1-7and slow-degrading MPs (40 mM 

DTT) between days 7-14. Non-degrading MPs (0 mM DTT) did not appear to degrade. 

MPs appear as light purple spheres, or as holes in spheroid matrix due to removal during 

histological processing. Arrows point out holes left by MPs (scale bar 100 µm). 

6.4 Discussion 

 Overall, these studies demonstrate the ability to fabricate degradable heparin-PEG 

MPs for protein loading and release, and provide examples of possible future applications 

in sequestering and releasing cell-secreted protein or delivering protein to cell aggregates. 

To characterize these MPs, alcian blue staining validated that heparin was successfully 

cross-linked into the polymeric network, and the staining appeared a deeper blue in 

heparin MPs with higher heparin content (Figure 6.2A). In addition, studies with surfen, 

previously shown to fluoresce upon binding to heparin (see Appendix A) [355], indicated 

that in solutions of equal masses of MPs, a higher fluorescence intensity was observed as 

the heparin content in MPs increased for 10, 20, and 30% heparin MPs. Then, 

fluorescence intensity appeared to plateau or even decrease slightly for 40 and 100% 

heparin MPs. While the reason for the plateau/decrease is unknown, it is possible that as 
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heparin content increased, steric hindrance between surfen molecules prevented further 

binding. To our knowledge, this and the data found in Appendix A are the first reports of 

utilizing surfen to assess heparin content in a hydrogel material.  

 To promote degradation of heparin-PEG-based MPs, DTT was incorporated into 

the polymeric network [60]. For all MPs, regardless of heparin content, the maximum 

molar ratio between PEG-DA and DTT that still allowed MP fabrication was between 

1.2:1 and 1.3:1 moles PEG-DA:DTT. This was similar to previous work that found a 

maximum ratio of 1:25:1 PEG-DA:DTT in degradable MPs fabricated with 3.4 kDa 

PEG-DA [221]. As the heparin content in MPs was increased, the amount of PEG-DA 

was decreased to keep the total polymer content constant for each MP formulation, which 

also decreased the total amount of DTT that could be added. This particular limitation is 

inherent to this method of MP fabrication; thus, the degradation rates reported here are 

the maximum rates possible for each of MP formulations. With the maximum amount of 

DTT, MPs degraded between 1-2.5 weeks, with 10 and 20% heparin MPs degrading the 

fastest (7-9 days) and PEG-based MPs and 30 and 40% heparin MPs degrading slower 

(14-19 days) (Figure 6.4). This indicates that degradation rate was dependent on the total 

amount of DTT in the network, as 10 and 20% heparin MPs degraded before 30 and 40% 

heparin MPs, but also dependent on heparin content, as PEG-based MPs had higher DTT 

content than 10 and 20% heparin MPs but still degraded more slowly. This is similar to 

the previous set of studies that utilized heparin-PEG MPs, which showed that increasing 

heparin content increased degradation rate, possibly due to heparin’s ability to attract 

more water into the network and accelerate hydrolysis of the ester linkages in the PEG-

DA network [58,356]. Finally, it was observed that as MP concentration increased, 
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degradation rate decreased (Figure 6.4). This was likely due to decreased water 

availability in the more concentrated groups, as the MPs tend to pellet during incubation. 

These observations should be kept in mind for in vivo studies, and in vitro studies should 

aim to mimic the concentration that MPs would experience in future in vivo applications. 

 Histone was used as a model protein to evaluate the ability of heparin-PEG-based 

MPs to load and release protein. Histone is positively charged at physiological pH and 

similar in size to many growth factors (11-21 kDa).  In studies to determine the maximum 

histone loading of 10% heparin MPs, a plateau region was found at about 35 µg 

histone/0.1 mg MPs, or 350 µg histone/mg MP (Figure 6.5A). On a per heparin basis, this 

corresponds to a max loading of 3500 µg histone/mg heparin. In previous studies with 

100% non-degradable heparin MAm MPs, the maximum loading for BMP-2 was 

observed to be approximately 10 times lower than this, about 300 µg BMP-2/mg heparin 

[59]. This difference may be due to the different proteins used, as parts of the histone 

protein have a flexible structure [357] and may allow for more compact binding as 

compared to BMP-2. It also may be due to the relative concentration of heparin within 

the network. Recently, it has been suggested that the ECM can act as an “electrostatic 

bandpass”, and it was shown that charged biomolecules are selectively filtered by ECM 

components like heparan sulfate [358]. In addition, a recent experiment with heparin 

hydrogels showed that as heparin content increased, depth of diffusion of histone into the 

gel decreased, indicating that heparin can affect diffusion of proteins through a hydrogel 

network [40]. Thus, the differences in loading capacity observed between the 10% 

heparin MPs in these studies and the 100% heparin MPs in previous studies [59] may be 

due to diffusion limitation imposed on the protein by higher heparin concentrations.  
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Finally, when loaded with a mass of protein that exceeded the loading capacity of 

10% heparin MPs (100 µg histone/0.1 mg MPs), it was observed that 20, 30, and 40% 

heparin MPs bound more histone than 10% heparin MPs, as indicated by less histone 

remaining in the supernatant (Figure 6.5B). This suggests that increasing the heparin 

content in the heparin-PEG MPs can increase MP loading capacity to a certain point, but 

as no differences were observed between 20-40% heparin MPs, it is possible that 

diffusion limitations also arise in these MPs as heparin content is increased.  

 The rate of protein release from delivery systems is important to consider for 

tissue engineering applications [211]. Loading studies indicated that at a mass of protein 

below the maximum loading capacity of the MPs (20µg histone/0.1 mg MP), all MPs 

formulations loaded about 80% of histone in solution (Figure 6.6A). This is similar to 

what was observed in previous studies with heparin-PEG MPs, where similar amounts of 

BMP-2 were loaded into all MP formulations regardless of heparin content  [58]. For 10 

and 20% heparin MPs, the majority of histone release was observed between days 1-3, 

likely due to the faster degradation rate of these MPs. Release rate for 30 and 40% 

heparin MPs was more linear and had not yet plateaued by day 7, likely because either 

these MPs had not degraded at this timepoint or because the higher heparin content of 

these MPs trapped histone in the network, preventing release (Figure 6.6B). Overall, the 

maximum amount of histone released by any formulation was only about 30% of the total 

histone loaded, either indicating that histone was lost due to binding to plastic surfaces or 

that histone remained trapped in the MP network. Thus, these studies suggest that heparin 

content and degradation rate are likely both contributing factors to protein release rate, 
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and that these MPs can be tuned to achieve a desirable release profile as required for 

specific applications.  

 Previous work has highlighted the utility of employing heparin hydrogels to 

sequester cell-secreted protein to either modulate cell behavior or for analysis [40,41]. As 

heparin has a high affinity for proteins released by ATDC5 cells during differentiation 

[304,309,311,322,331], 10% heparin MPs were incubated with ATDC5 cells in a proof-

of-principle study to demonstrate the ability of MPs to sequester and then release cell-

secreted proteins for further analysis.  MPs were incubated overnight with ATDC5 cells 

that had undergone six days of monolayer culture, as ATDC5 cells are seen to upregulate 

chondrocytic gene expression markers around this time, indicating that protein 

production may also be increased [309] (Appendix E.2). MPs were transferred to PBS to 

allow degradation and after 2 days, about 3-10 µg of protein was released, depending on 

the mass of MPs used (Figure 6.7). For each mass of MPs used, the same amount of 

protein was released from 10% heparin MPs and PEG-based MPs incubated with cells or 

in media alone. Thus, it was unclear if 1) protein sequestration was due to specific 

interactions with heparin and 2) the protein sequestered was secreted by cells or was from 

the FBS in the cell culture media. Studies discussed in prior chapters of this thesis 

indicate that heparin MPs bind more protein than PEG-based MPs and that heparin MPs 

incubated with cells bind additional proteins compared to those incubated in media alone 

(Chapter 4, Figure 4.10). This suggests that even if equal amounts of protein were 

sequestered in each group, the identity of those proteins may have been different.  

To validate the hypothesis that released proteins in each MP groups were 

different, additional assays, such as ELISAs or mass spectrometry would need to be 
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conducted. Unfortunately, cell-secreted proteins would likely only be detectable if the 

amount of total protein released from MPs was at least 20 µg, based on assumptions 

described in Appendix F.1.The reasons for the low protein release observed in this study 

are unclear, but assuming each MP group bound the maximum amount of protein 

possible (Figure 6.5), 0.1, 1, and 3 mg MP groups should have theoretically loaded 35, 

350, and 1050 µg protein, respectively. As only 2-10 µg protein was released, it is 

evident that the majority of the sequestered protein either was lost to plastic surfaces or 

remained bound to the heparin MPs. This may have been due to the short degradation 

time (2 days), chosen to maximize MP degradation and reduce the risk for protein 

denaturation. Thus, more work to optimize protein release needs to be conducted prior to 

further analyses are conducted to identify proteins.  

Previously, MPs have been integrated into dense cell aggregates to achieve more 

uniform delivery of soluble biomolecules [253,255,256,258,260,261,263,264]. While 

biodegradable MPs have been incorporated into aggregates, including PLGA and CS 

MPs [253,255,264], modulating degradation rate of MPs within cell spheroids has yet to 

be achieved. Here, by tuning the concentration of DTT in the polymeric network, 

degradation of PEG-based MPs in cell aggregates was achieved in 7 days for fast-

degrading MPs and 14 days for slow-degrading MPs (Figure 6.8). Degradation of MPs in 

spheroids could enhance release of biomolecules and could also be beneficial in cases 

where aggregates are injected in vivo. In the future, degradable heparin-PEG MPs could 

be integrated into spheroids to more finely tune protein release.  

As mentioned, the fastest degradation rate for each MP formulation was used for 

these studies. Thus, if these degradation times are too long for a particular application, or 
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result in denaturation of sequestered proteins in studies aiming to capture and deliver 

cell-secreted proteins, other degradation techniques could be applied. First, as DTT 

accelerates the hydrolysis of the ester bond within the acrylate group of PEG-DA, 

employing 4- or 8-arm PEG-acrylate could enable more linkages between DTT and 

acrylate groups, increasing the number of sites susceptible to rapid degradation. In 

addition, incorporation of enzymatically degradable peptide sequences, such as MMP or 

plasmin-sensitive peptides [28,29], could aid in increasing degradation rate, as the 

concentration of the enzyme responsible for degradation could be controlled during in 

vitro experiments. For example, a recent study with PEG-DA MPs indicated that 

integration of a collagenase-sensitive sequence into the PEG network allowed 

degradation within 24 hours when MPs were incubated with collagenase [221]. Finally, 

degradability has been achieved in PEG materials via co-polymerization of degradable 

synthetic and natural polymers such as poly(lactic acid) [28,359], collagen [360], and 

hyaluronic acid [361]. While all of these options would require significant adjustment to 

the system described, they could be investigated in future work aiming to more tightly 

control degradation of PEG-based MPs.   

6.5 Conclusion 

 Heparin-PEG MPs with tunable degradation rates and heparin content were 

developed. MP degradation occurred between 7-19 days and was dependent on the 

concentration of MPs in solution. In histone loading studies, it was observed that the 

maximum loading capacity of these MPs was about 3500 µg/mg heparin, and that 

increasing the amount of heparin increased loading capacity. MPs released histone over 

the course of seven days in a manner dependent likely on both degradation rate and 

heparin content. Finally, heparin-PEG-based MPs were used to sequester and release 
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proteins present in ATDC5 cell cultures and degradable PEG-based MPs were observed 

to degrade in ATDC5 cell aggregates between 7-14 days. Overall, these degradable 

heparin-PEG MPs have potential to modulate protein release for regenerative medicine 

applications.  
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CHAPTER 7 

CONCLUSION AND FUTURE DIRECTIONS 

7.1 Summary 

 In this work, biomaterial systems were engineered to enable analyses and 

modulation of dynamic cellular processes. Specifically, the changes in cell behavior in 

response to both external stimuli and cell-cell communication in disease states are 

difficult to capture in traditional cell culture systems. In addition, modulating cell 

phenotype as it changes in time during differentiation can be challenging with traditional 

methods, such as delivery of single growth factors. Thus, in this work, heparin and PEG-

based biomaterial systems were designed to specifically account for dynamic cell 

behavior. For example, proof-of-concept studies with MSCs, adipocytes, and osteoblasts 

indicated that a PEG-based hydrogel system enabled cell cross-talk in hyperglycemic 

conditions. In addition, incorporation of heparin MPs in ATDC5 cell aggregates 

highlighted the utility of employing GAG-based materials to modulate cellular 

differentiation. With these results in mind, heparin-PEG core-shell MPs and 

hydrolytically degradable heparin-PEG MPs were developed to provide tighter temporal 

over heparin-mediated protein presentation in the cellular microenvironment for future 

applications. These technologies were addressed in detail in the four chapters presented 

in this thesis.  

 In Chapter 3, a PEG-based hydrogel system was used to co-culture MSCs, 

osteoblasts, and adipocytes in normal and high glucose conditions for seven days. Cell 

viability and gene expression for markers adipocyte/osteoblast differentiation and 

glucose-responsiveness were assessed for all three cell types, and clonogenicity was 



www.manaraa.com

 168 

assessed for MSCs. Overall, multivariate models indicated that the primary 

discrimination of gene expression dataset was dependent on neighboring cell type. 

Further discrimination by glucose level was dependent on culture configuration, 

suggesting that neighboring cells influenced cell response to glucose. Reduced 

clonogenicity and viability were observed in MSCs in mono-culture or in co-culture with 

osteoblasts, a trend not observed in MSCs cultured with adipocytes. In addition, 

adipogenic gene expression indicated that cross-talk between adipocytes and MSCs may 

have occurred. Taken together, these results indicate that cell cross-talk affected MSC, 

osteoblast, and adipocyte behavior, and highlights the importance of utilizing biomaterial 

based systems that permit culture and analysis of multiple cell types for in vitro disease 

models. In addition, this study showed the utility in hydrogel-based systems to interrogate 

dynamic cellular communication in response to external stimuli in an in vitro disease 

model. 

 In Chapter 4, heparin MPs were used to modulated differentiation in a model 

system with ATDC5 cells, known to under endochondral ossification in vitro. Heparin 

and PEG MPs were incorporated into ATDC5 spheroids and it was observed that in 

heparin MP groups, chondrocytic differentiation was decreased in a dose-dependent 

manner. This trend was also observed when monolayer ATDC5 cells were cultured in 

transwell with heparin and PEG MPs, indicating that this phenomenon was not dependent 

on physical contact with the MPs. Finally, to further elucidate mechanism behind 

observed decreases in differentiation, heparin MPs were run on SDS-PAGE, which 

indicated that heparin MPs cultured with cells sequestered protein in the 17 kDa range. 

As many growth factors implicated in endochondral ossification, such as IHH, BMPs, 
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and FGFs, fall in this range [346], it is possible that observed changes in differentiation 

were partially due to sequestration of cell-secreted growth factors. Overall, these studies 

indicate that heparin MPs can delay endochondral ossification, likely due to protein 

sequestration. Furthermore, they illustrate the ability of heparin materials to modulate the 

dynamic process of cell differentiation. 

 Having observed the effectiveness of heparin in modulating differentiation in 

ATDC5 cell studies, we aimed to develop heparin-based tools to achieve temporal 

modulation of protein sequestration and release. Thus, in Chapter 5 heparin-PEG core-

shell MPs were developed for protein sequestration and temporally controlled release of a 

protein-laden core. Heparin-PEG core-shell MPs were fabricated using a re-

emulsification technique to encapsulate pre-formed heparin MPs within a degradable 

PEG-based shell, thus creating MPs with tunable amounts of encapsulated heparin. In 

pre-fabrication load studies with BMP-2, degradable core-shell MPs initiated enhanced 

ALP activity as compared to non-degradable core-shell MPs, indicating these MPs can be 

used to temporally modulate protein presentation to cells. In addition, post-fabrication 

loading studies indicated that core-shell MPs were able to sequester BMP-2 through the 

PEG shell and then re-present that protein to cells to initiate enhanced ALP activity. 

Thus, this work developed a core-shell MP technology that utilized heparin to preserve 

protein bioactivity, delivered protein in a temporally controlled manner by employing a 

degradable PEG-based shell, and was able to sequester and re-deliver protein with no 

burst release. Overall, this technology has the potential to assist in further tuning dynamic 

cell behavior via protein sequestration and release. 
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 Finally, in Chapter 6 heparin-PEG-based MPs with tunable hydrolytic degradation 

and heparin content were developed. Alcian blue staining and surfen binding studies 

validated that heparin was cross-linked into the MP network for 10, 20, 30, and 40 wt% 

heparin MPs. Degradation studies showed that MP degradation occurred in 1-2 weeks 

and was dependent DTT and heparin content in the MP as well as the concentration of 

MPs in solution. Loading studies with histone indicated that loading capacity increased 

for MPs with higher heparin content, as compared to 10% heparin MPs, and that histone 

was released from MPs in a manner dependent likely both on heparin content and 

degradation rate. Finally, MPs were used in proof-of-principle studies to show the 

feasibility of sequestration and release of cell-secreted proteins and degradation of MPs 

within ATDC5 cell aggregates. Overall, these studies characterized degradable heparin-

PEG-based MPs and demonstrate their utility for protein loading and release as well as 

integration into cell aggregates for tissue engineering applications. Thus, in the future, 

these MPs can be used as tool to regulate and interrogate dynamic cell processes. 

 As a whole, this work demonstrates that dynamic cellular processes can be both 

studied and regulated using biomaterial-based approaches. In addition, heparin-based MP 

tools can aid in gaining enhanced temporal control over protein sequestration and release. 

Thus, these biomaterial based technologies have the potential to be used in a variety of 

tissue engineering applications. 

7.2 Conclusions 

The research presented in this dissertation highlights the utility of PEG- and 

heparin-based biomaterial technologies to better understand and control dynamic cell 

systems. Aspects of the in vivo microenvironment were captured by co-culturing cells in 
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an in vitro model system and by integrating heparin materials into culture systems and 

microparticle-based tools to modulate protein presentation. The results of this work 

suggest that 1) PEG-based platforms can enable complex analyses of cells in co-culture, 

2) heparin materials can temporally modulate endochondral ossification, and 3) 

utilization of heparin in microparticle technologies can enable tighter temporal control 

over protein sequestration and release. Together, these results validate the use of 

biomaterials to study and modulate complex cellular behavior.  

In Chapter 3, the utility of a laminated PEG-based hydrogel system to culture 

MSCs, osteoblasts, and adipocytes in mon-, co-, and tri-culture in normal and high 

glucose conditions for seven days was explored. PEG-based hydrogels were chosen 

because they have low capacity for protein binding, allow protein diffusion through the 

network , and can be chemically modified with peptide sequences to enhance cell 

attachment and matrix degradation [29,143,144]. Viability data and staining for 

adipocytic and osteoblastic markers (lipid deposition and ALP) indicated that the culture 

system was a valid platform for analysis of the three cell types. This validation was 

important, as both high glucose conditions and co-culture between these cell types has 

been shown to affect, sometimes negatively, cell viability and function [83–93,97–104]. 

In addition, this culture platform permitted MSCs retrieval from enzymatically 

degradable blocks for subsequent clonogenicity studies, and in the future could be 

employed for other functional post-co-culture cell analyses. Finally, gene expression for 

markers of osteogenesis/pro-bone formation, adipogenesis, pro-adipocyte function, 

energy metabolism, and glucose-responsiveness was assessed for all three cell types. In 

global multivariate model for each cell type, the primary source of variance was due to 
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neighboring cell type, indicating that cellular cross-talk occurred in this culture system. 

Discrimination by glucose level was only possible in some culture configurations, 

suggesting that neighboring cell type impacts cell response to glucose. These two 

observations support the use of the co-culture platform presented in this work, as 

traditional monoculture platforms cannot capture system-level cell communication that 

occurs in disease states.  

Multivariate models permitted a deeper understanding of how cells were affected 

in co-culture settings. In the global PLS-DA gene expression model for adipocytes, the 

first latent variable separated osteoblast-containing (OMA) vs. non-osteoblast-containing 

(AMA, AAA) culture conditions, suggesting that osteoblasts, or the communication 

between osteoblasts and MSCs, had an impact on adipocytes. In addition, the adipocytes 

cultured with MSCs (AMA and OMA) showed correlation with markers of adipogenesis 

and energy metabolism, while those cultured without MSCs (AAA) correlated with 

markers of inflammation and oxidative stress, suggesting that MSCs promoted adipocytes 

to upregulate adipogenic and metabolic genes. MSC viability and clonogenicity was 

decreased in osteoblast-containing cultures (OMO), while osteoblast viability was highest 

in MSC-containing cultures (OMO), suggesting that MSCs exerted modulatory effects on 

osteoblasts at the expense of their own viability and clonogenicity. The positive influence 

of MSCs on both cell types may be due to their secretion of therapeutic soluble factors 

[78]. Finally, MSCs in co-culture with adipocytes (AMA and OMA) showed 

maintenance of viability and clonogenicity under high-glucose conditions, a trend not 

observed in other culture configuration (OMO and MMM). Overall, these results indicate 

that MSCs may exert compensatory effects on osteoblasts while adipocytes exert 
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compensatory effects on MSCs, and that adipocytes are affected by neighboring 

osteoblasts. More so, it illustrates the utility of advanced biomaterial-based cell culture 

platforms combined with multivariate modeling to interrogate dynamic cell systems 

implicated in disease. 

In Chapter 4, we transitioned to utilizing heparin-based biomaterials to modulate 

another dynamic process: cell differentiation. In this set of studies, an in vitro model 

system of ATDC5 cell endochondral ossification with was used as a testbed for 

understanding how heparin MPs can modulate differentiation. As endochondral 

ossification is tight regulated by a variety of heparin-binding proteins, such as FGFs, 

BMPs, TGFβs, IHH, and Wnts [23,25,107,186], it is possible that heparin could sequester 

these proteins in a manner that modulates ATDC5 cell differentiation. Thus, heparin and 

PEG MPs, a low-binding material control [28], were integrated in ATDC5 cell aggregates 

(spheroids) at high and low doses and assessed for gene expression and matrix deposition 

markers of differentiation. It was observed that gene expression for collagen II and 

aggrecan were significantly downregulated in high heparin MP groups as compared to 

PEG and no MP groups, a trend that was confirmed by staining for GAG and collagen II 

matrix deposition. Overall, this suggests that heparin MPs can delay or reduce 

differentiation via protein sequestration, as this trend was not observed in PEG MP 

control groups. 

To further assess if this phenomenon was actually due to heparin-mediated 

protein sequestration and not simply due to the presence of MPs in the spheroid matrix, 

heparin and PEG MPs were cultured with ATDC5 cells in monolayer transwell culture, 

allowing exchange of soluble factors without physical contact. Similar to trends observed 
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in spheroid culture, heparin MPs delayed or reduced differentiation as assessed by gene 

expression, staining for GAG and matrix mineralization, and quantification of extracted 

stains. Total DNA analysis confirmed that this phenomenon was not due to a decreased 

cell number in the heparin MP group. In addition, SDS-PAGE analysis of MPs incubated 

in transwell with cells suggested that heparin MPs bound more and different types of 

protein than PEG MPs. Finally, SDS-PAGE showed that while heparin MPs were able to 

bind proteins from the FBS-containing media, when incubated with cells, additional 

proteins of about 17 kDa were also sequestered. The identity of these protein remains 

unknown, but IHH, BMPs, TGFβs, and FGFs are likely candidates, as they all have MWs 

near 17 kDa. Taken together, these studies strongly support the hypothesis that the 

mechanism behind heparin MP-mediated changes in ATDC5 cell differentiation is 

soluble factor sequestration.  

Several other studies have shown the ability of heparin materials to modulate 

cellular differentiation, likely through soluble factor sequestration [40,41]. This suggests 

that heparin-mediated sequestration of soluble factors is translatable to other cell systems. 

For example, heparin-based materials could be used to modulate endochondral 

ossification in injured growth plates, as current therapies under investigation cannot yet 

recapitulate native growth plate cartilage in animal models [111,113–118]. In addition, 

heparin materials could be used in place of antibodies to sequestered undesirable 

osteogenic factors in patients with craniosynostosis [209,210,334]. Finally, chondrocytic 

differentiation of MSCs requires tight control over chondrocytic factors [37], which could 

potentially be modulated by heparin materials. Overall, the studies presented in Chapter 4 

highlight the ability of heparin-based biomaterials to modulate the dynamic process of 
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cellular differentiation, a characteristic of heparin materials that could be used in a variety 

of tissue repair processes.  

Inspired by the potential for heparin MPs to modulate cellular processes via 

sequestration of growth factors, we developed a technology to temporally modulate this 

process in Chapter 5. In this work, heparin-PEG core-shell MPs were developed for 

protein sequestration and temporally modulated release of the protein-laden core. To 

fabricate these MPs, a re-emulsification technique was used to encapsulate previously 

formed heparin MPs with a PEG-DA shell. As this technique resulted in more than one 

heparin MP in each PEG shell, quantification methods were developed to show that 

heparin content in core-shell MPs was predictable and tunable, based on both the amount 

of heparin in the precursor polymer solution and the final core-shell MP cross-sectional 

area. Finally, the hydrolytically degradable PEG-based shell was able to degrade and 

release the heparin core in about 6-7 days by integrating DTT into the PEG-DA network. 

Thus, heparin-PEG core-shell MPs with predictable amounts of heparin and a degradable 

shell were formed.  

Previous worked has indicated that BMP-2 bound to heparin MPs can enhance 

ALP activity in C2C12 cells [59]. Thus, in proof of concept studies, heparin MPs were 

pre-fabrication loaded (i.e. prior to core-shell MP fabrication) with BMP-2 and then 

encapsulated into degradable and non-degradable core shell MPs. Loading and release 

studies showed very little release (3-8% release) of BMP-2 over 7 days, indicating that 

observed cell response in subsequent cell studies would be due to release of the BMP-2 

laden heparin core and not due to release of soluble BMP-2. When incubated with C2C12 

cells, degradable core-shell MPs induced similar ALP activity as compared to the soluble 
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BMP-2 control, while cells cultured with non-degradable core-shell MPs showed 

significantly lower ALP activity. This indicates only degradable core-shell MPs were 

able to release the BMP-2-laden heparin core and initiate a cell response. Overall, these 

results show that core-shell heparin-PEG MPs could be used to gain tighter temporal 

control protein release, as well as reduce burst release, two sought-after characteristics in 

controlled release systems for tissue engineering applications [52,245,247]. 

In addition to pre-fabrication loading, core-shell MPs were post-fabrication 

loaded (i.e. loaded after core-shell MP fabrication) to evaluate the ability of proteins to 

diffuse through the PEG shell, be sequestered onto the heparin core, and then be released 

while bound to the heparin core to initiate a cell response. Loading studies indicated that 

degradable core-shell MPs were able to load almost 100% of the BMP-2 protein in 

solution, and release studies again showed very little protein release over 7 days (<3% 

release). When incubated with C2C12 cells, degradable core-shell MPs were able to 

initiate significantly higher ALP activity than the soluble control, again indicating release 

of the protein-laden heparin core to initiate a cell response. The ability to post-fabrication 

load these core-shell MPs could enable sequestration and temporally modulated re-

delivery of cell-secreted proteins, a technique recently proposed as a means to more 

tightly control dynamic cellular processes [3]. For example, a protein that is undesirable 

at one point in time could be sequestered and effectively eliminated from the 

microenvironment until re-delivery at a point in time at which it is desirable again. Thus, 

studies conducted with the core-shell MPs developed in this work show their utility for 

use in future experiments to carefully tune protein presentation during differentiation or 

other cell processes.  
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Finally, in Chapter 6, degradable heparin-PEG based MPs were developed and 

investigated for future applications involving temporally controlled protein loading and 

release. Previously, control over heparin MP degradation has been a challenge due to 

cross-linking techniques [58,59]. Thus, in this work hydrolytically degradable heparin-

PEG MPs of varying heparin content (10, 20, 30, and 40 wt% total polymer) were 

developed and characterized. Alcian blue staining and incubation with surfen indicated 

that heparin was successfully cross-linked into the network, and suggested that more 

heparin was cross-linked into the network as the amount of heparin in the precursor 

polymer solution was increased. DTT was integrated into the polymeric network, as it is 

known to enhance hydrolytic degradation PEG-DA materials [60]. MP degradation 

occurred between 1-2 weeks and was dependent both on DTT and heparin content in the 

MPs. Thus, degradable heparin-PEG-based MPs with tunable heparin content were 

developed.  

To evaluate the ability of MPs to load protein, histone was used a model protein, 

as it is positively charged and similar in size to a variety of growth factors. The maximum 

loading capacity was evaluated to be about 3500 µg histone/mg heparin for 10% heparin 

MPs, which is about 10 times higher than what was previously observed for BMP-2 

loading in 100% heparin MPs. This difference could be attributed to differences in 

protein binding for the two proteins, or to the ability of higher amounts of heparin to 

restrict diffusion of positively charged proteins into heparin-based hydrogels. Previously, 

it has been observed that heparan sulfate can act to selectively filter biomolecule passage 

through the ECM [358], and that as heparin content was increased in hydrogels, diffusion 

depth of histone was decreased [40]. The next set of studies supported the possibility that 
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increased amounts of heparin prevented protein diffusion, as the binding capacity of 20, 

30, and 40% heparin MPs were not significantly different from each other, though they 

were significantly higher than 10% heparin MPs. Thus, protein loading capacity could be 

increased by increasing heparin content to a certain extent, at which point a plateau was 

reached. Finally, heparin MPs were able to release histone over the course of 7 days at a 

rate dependent likely both on degradation rate and heparin content. Thus, these heparin-

PEG MPs can be tuned to achieve a degradation rate and protein release rate suitable for 

a given tissue engineering application. 

Heparin-PEG MPs and PEG-based MPs were used in two proof-of-principle 

studies to demonstrate potential future applications for this technology. First, 10% 

heparin and PEG based MPs were incubated with ATDC5 cells, retrieved and degraded 

for two days. Analysis of supernatant indicated that no differences in protein release were 

observed between heparin and PEG groups, and that total protein released was lower than 

expected, indicating further optimization of the MPs is required before released cell-

secreted proteins can be analyzed. Second, fast-, slow-, and non-degrading PEG-based 

MPs were incorporated into ATDC5 spheroids and monitored for degradation via 

histological processing. Fast- and slow-degrading MPs degraded in about 7 and 14 days, 

respectively, while non-degradable MPs did not degrade over the 14 day culture period. 

In the future, degradable heparin-PEG-based MPs loaded with protein could be 

incorporated into cell spheroids to affect cell differentiation via protein release. Thus, 

these studies demonstrate the utility of degradable heparin-PEG for future cell studies, 

either for isolation and concentration of cell-secreted proteins for analysis, or for protein 

delivery in dense cell aggregates. Overall, these MPs have the potential to modulate 
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dynamic cellular processes, such as differentiation, by temporally controlling protein 

delivery.  

In these studies, two model systems were used to demonstrate the utility of 

biomaterial-based systems for analysis and regulation of cellular behavior. First, due to 

their implication in the diabetes and osteoporosis, MSCs, adipocytes, and osteoblasts 

were cultured on a co-culture platform that allowed cell-cross talk and subsequent 

analysis of each individual cell type, including live-cell retrieval of MSCs. Multivariate 

analyses indicated that cells were highly dependent on neighboring cell types in the 

culture configurations, validating the need for biomaterials to facilitate co-culture 

experiments. Second, ATDC5 cell endochondral ossification was used as a proof-of-

principle model system to demonstrate the ability of heparin MPs to modulate cellular 

differentiation. These studies highlighted the ability of heparin to act on and modulate 

dynamic cell systems, likely through soluble factor sequestration, and motivated the 

development of two additional technologies to gain tighter control over heparin-mediated 

protein sequestration. Heparin-PEG core-shell MP and heparin-PEG MP technologies 

were developed and demonstrated to temporally control protein sequestration and release. 

Thus, overall this work demonstrates the utility of biomaterial-based technologies for 

studying cell behavior to gain further insight into various pathologies and cellular 

processes, and for modulating cellular differentiation for tissue regeneration and repair. 

7.3 Future Directions 

 The results of this work highlight several technologies that are beneficial for 

understanding and controlling cellular behavior. The PEG-based co-culture system 

presented allowed analysis of complex interactions between MSCs, adipocytes, and 
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osteoblasts, and heparin MPs were able to modulate ATDC5 cell differentiation. Inspired 

by these experiments, heparin-based MP technologies were developed to further enable 

the use of heparin to modulate protein presentation in an effort to control cellular 

differentiation. However, another attractive aspect of these technologies is their flexibility 

and potential to be modified to meet different goals in tissue engineering and regenerative 

medicine. Thus, future work could extend and enhance these technologies for their use in 

a plethora of applications.   

 As the culture platform developed in Chapter 3 allows for post-culture retrieval of 

MSCs, several applications for released live cells could be explored. First, as it is 

hypothesized that increased marrow fat and decreased bone mineral density is due to 

dysregulated lineage allocation in MSCs [17], it would be interesting to conduct 

differentiation assays on MSCs retrieved from cultures with and without high glucose 

levels. If MSC osteoblastic differentiation was restricted in cultures with high glucose or 

if measures of osteoblastic function (such as matrix mineralization) were reduced, this 

would support the hypothesis that MSC differentiation is dysregulated in hyperglycemic 

conditions. Confirmation of this hypothesis could lead to development of drugs and 

therapies to counteract this dysregulation. Second, this platform and release of live cells 

could be extended to other applications in which cells could be “primed” within the 

hydrogel co-culture platform before use in other applications. For example, it has been 

observed that chondrocyte and MSC co-culture promotes the chondrocytic phenotype in 

MSCs [133–135]. This platform provides a 3D environment in which the two cell 

populations can be cultured, interact, and then be released for subsequent cartilage 
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therapy applications. Overall, the ability to retrieve live cells from a co-culture hydrogel 

system could be used in a variety of analysis and cell priming applications. 

 The co-culture platform presented in this work also allows for user-defined, 

dynamic changes to the culture system. For example, to better mimic the conditions 

observed in diabetes, additional adipocyte blocks could be laminated to the tri culture 

system over time. In the same vein, osteoblast blocks could be removed. We have shown 

in previous experiments that it is possible to laminate, separate, and then relaminate two 

cell-laden hydrogel blocks without loss of cell viability (Figure 7.1). Thus, it would be 

possible to 1) laminate additional adipocyte blocks onto the culture system and/or 2) 

remove osteoblast blocks through enzymatic degradation, both without loss of cell 

viability. This could be applied to other model systems in which cellular communication 

is transient or dynamic, such as communication between osteoblasts and chondrocytes 

during endochondral ossification [23] or signaling between inflammatory cells, 

osteoblasts, and chondrocytes in rheumatoid arthritis [362]. Overall, the co-culture 

platform can be tuned to mimic many cellular process that change in space and time. 

 

Figure 7.1 (A) 1.Fabrication, 2. separation via enzymatic degradation, and 3. re-

lamination of hydrogel culture system, PEG-DA gels depicted with blue dye, Acrylate-
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PEG-LGPA glue clear. All gels are acellular. Arrows indicate glue and scale bar = 0.5 

mm. (B) Cell viability was calculated using LIVE/DEAD staining, confocal imaging, and 

ImageJ processing for hydrogels laminated, separated and relaminated (day 4 reglued) or 

control groups that were only originally laminated, all normalized to day 4 control group. 

No significant differences in viability were observed (p<0.05). (C) Representative images 

of LIVE/DEAD staining in each gel, scale bar = 100 µm.  

The use of in vitro models for drug screening can be very beneficial, as human 

cells can be used and animal number is reduced [363]. In the co-culture model system 

presented in Chapter 3, it would be interesting to observe how cellular cross-talk is 

affected by drugs that aid in controlling diabetes, such as insulin. By extending the 

culture timeline and introducing insulin at various points in the experiment, it may be 

possible to gain an understanding of when and how insulin presentation can modulate 

communication between the three cell types. Eventually, this may lead to a better 

understanding of the clinical outcomes in patients with controlled and uncontrolled 

blood-glucose levels. Additionally, utilizing this system to develop and screen drugs or 

other therapeutic biomolecules to enable a return to normal differentiation potential in 

MSCs could allow reduction of diabetes-induced osteoporosis.  

In Chapter 4, heparin MPs were shown to modulate endochondral ossification, 

likely through sequestration of soluble factors. While heparin MPs sequester positively 

charged protein in a rather non-discriminate manner, other affinity matrix systems have 

been developed to present peptide sequences that target and sequester specific proteins, 

such as VEGF, TNFα, and FGF [43,46,335], which would provide more predictable 

control over cellular processes. Specific sequestration would be beneficial in several of 

the applications mentioned in Chapter 4. For example, to modulate growth plate cartilage 

regeneration, it may not be beneficial to indiscriminately bind proteins, as heparin-

binding proteins such as BMP-2 and IHH [25] enhance chondrocyte proliferation, which 
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is important for normal growth plate function [106]. However, the sequestration of 

heparin-binding proteins that suppress proliferation and promote hypertrophy, like FGFs 

and VEGF [25,106], could reduce the risk of bony bridge formation. This could also 

apply to therapies for articular cartilage regeneration and craniosynostosis. Thus, 

designing biomaterials that can specifically sequester proteins of interests could be 

beneficial as a means to more carefully modulate differentiation.  

In addition to utilizing endogenous growth factors to manipulate differentiation, it 

is possible that heparin based materials could be used to sequester and thus concentrate 

proteins in the local cellular microenvironment for later analysis. Recently, it was shown 

that heparin-based materials could be used to identify proteins secreted by encapsulated 

cardiac progenitor cells, even when these growth factors were at a much lower 

concentration in the surrounding media [364]. Thus, by incubating heparin MPs with 

cells undergoing a process of interest, it would be possible to capture some of the proteins 

involved, which could enable a more mechanistic understanding of the process in 

question. One difficulty in analyzing heparin-bound proteins is removal of proteins from 

the MPs in a manner that allows subsequent analyses to be conducted. As proteins are 

electrostatically bound to heparin, disrupting these interactions with a concentrated salt 

solution enables protein release, but also interferes with subsequent assays, such as 

ELISAs. This technique is compatible with mass spectrometry, but low-abundant proteins 

are often masked by high-abundant proteins present in the serum in this analysis 

technique [328,365]. Combining this idea with the core-shell MP technology described in 

Chapter 5 could allow size exclusion by the PEG-based shell for additional filtration of 

proteins of interest, as discussed later on in this section. Separation of proteins from 
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heparin MPs using salt is also the first step for running SDS-PAGE, which when 

combined with western blots, could allow identification of proteins. However, western 

blots are very low throughput and require an idea of which proteins to assay for, resulting 

in a lot of guesswork. Finally, implementing degradable heparin-based MPs like those 

discussed in Chapter 6 could allow release of intact proteins, which could then be 

analyzed on protein arrays. Overall, use of heparin as a tool for concentrating proteins 

could enable identification of low abundant proteins such as biomarkers or growth factors 

that could potentially enable better treatments for disease or tissue regeneration.  

The heparin-PEG core-shell MPs presented in Chapter 5 could be modified in 

several different ways that would provide innovative techniques to modulate protein in 

the cellular microenvironment. In the current design, degradation of the PEG-based shell 

is dependent on hydrolysis, which is controlled by the amount of DTT integrated into the 

PEG network. This preset degradation method is advantageous in well-defined systems, 

in which desirable timing for protein delivery is known, but possibly not as useful in 

poorly understood systems, as it does not allow degradation to be responsive to the local 

cellular microenvironment. Thus, as PEG can be chemically modified with enzymatically 

degradable peptide sequences, a shell designed to be degradable by a specific enzyme in 

the cellular microenvironment could better enable this core-shell MP system to respond 

to cellular behavior. Often, this technique has been employed to develop hydrogels 

responsive to enzymes implicated in inflammation, such as MMPs or human neutrophil 

elastase [366–368], or enzymes implication in cell migration, such as plasmin [369]. PEG 

materials can also be modified to be degradable in a pH-dependent manner [370], which 

could be beneficial in tissues with low pH, such as in tumors or inflammatory 
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environments [12,371]. While such a technique has yet to be developed, having a 

material whose degradation could be triggered by presence of a particular protein, not just 

an enzyme, would be particularly useful. This could be achieved by engineering a 

polymer linkage to break upon encountering said protein, possibly by inclusion of 

something that changed confirmation when it bound the protein (an inhibitor or peptide 

sequence) within the polymeric network. While the particular type of degradation would 

have to be selected for the application at hand, core-shell MPs with degradation 

responsive to cues in the cellular microenvironment could be highly beneficial. 

Recently, ideas have circulated around utilization of biomaterials to modulate 

endogenous, cell-secreted proteins within the cellular microenvironment as a means to 

control dynamic cellular processes, in place of their traditional use in protein delivery or 

as cell scaffolds [3]. However, biomaterials that can engage with cellular 

microenvironment in a temporally controlled manner are only just emerging. Modifying 

the core-shell MPs presented in this work to prevent sequestration prior to shell 

degradation would result in a first of its kind technology for temporally controlled protein 

sequestration. As presented now, the core-shell MPs allow protein diffusion through the 

PEG-based shell, albeit at slightly slower rate. By decreasing the pore size in the shell, it 

would be possible to prevent protein diffusion into the core-shell MP prior to shell 

degradation. In effect, this would become a controlled delivery vehicle for sequestration 

agents (i.e. the heparin MP core). Then, the technology could be used to precisely time 

protein sequestration, beneficial in applications where timing of growth factor 

modulation is critical, such as cellular differentiation. One way to slow protein diffusion 

in PEG materials, especially of larger proteins, is to decrease the MW of the PEG 
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polymers [27,372]. If sufficiently small pore sizes to prevent protein diffusion cannot be 

achieved with PEG materials, other materials could be explored. For example, PLGA is a 

hydrophobic material with degradation kinetics that can be controlled by the MW of the 

polymer as well as the lactide:glycolide ratio [373,374]. On the microparticle size scale 

(<300 µm in diameter), network degradation occurs by bulk erosion due to hydrolysis of 

the ester linkage in the polymeric backbone [373,374]. However, unlike hydrophilic PEG 

materials, the hydrophobicity of PLGA only permits transport of small, hydrophobic 

molecules until  aqueous pores have developed [373,374] . This characteristic may allow 

better control over protein diffusion in PLGA and other hydrophobic materials as 

compared to PEG. Thus, by modifying the shell of these core-shell MPs to prevent 

protein diffusion prior to degradation, it would be possible to develop a delivery vehicle 

that had controlled release of sequestration agents. 

In addition, the shell of core-shell MPs could be tuned to exclude large proteins 

(>40 kDa) while allowing sequestration of smaller growth factors. This could be 

beneficial in any scenario that involves serum, as growth factors have to compete with 

large, heparin-binding serum proteins, such as fibrinogen or fibronectin [326–332], for 

binding sites on the heparin MP. However, if the pore size of the PEG shell was tuned to 

exclude large proteins, higher concentrations of growth factors could be bound. Studies 

utilizing PEG-based materials for cell encapsulation have indicated that PEGs of MWs 

ranging from 2-8 kDa could be used for this purpose [372], indicating that while the 

increases in chain length due to DTT in the network of the PEG-shell would still have to 

be accounted for, the core-shell MPs discussed in this work could be modified to exclude 

larger proteins. This could be beneficial for two different types of applications. First, if 
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these MPs were to be used to sequester endogenous protein in vivo (and even in most in 

vitro applications), serum proteins could interfere with their ability to affect 

differentiation by blocking sequestration of growth factors. Second, as discussed in a 

future direction for the heparin MPs in Chapter 4, using heparin MPs to identify proteins 

secreted during cell culture could of interest. However, as is the case with many 

experiments that attempt to identify low-abundance proteins from serum-containing 

solutions [328,365], a collaborating lab has found that serum proteins that bind to heparin 

MPs can mask the presence of low abundant proteins in mass spectrometry analysis. 

Thus, core-shell MPs with size-exclusive properties could act as a protein filter, 

sequestering and concentrating these proteins for future analysis. Recent studies have 

showed the utility in this by using core-shell MPs to selectively sequester biomarkers 

from blood and urine [48–50], but this technique has yet to be applied for analysis of 

growth factors. Overall, exclusion of large serum-bound proteins by the PEG-shell could 

allow core-shell MPs to bind growth factors at higher concentrations.  

Currently, the core of the core-shell MPs presented is non-degradable. Because 

proteins can interact with cell receptors while bound to heparin [175,182], this is not 

necessarily problematic; however, it does impose spatial limitations on the system, as 

only cells in contact with heparin MPs will be affected by bound proteins. This problem 

could be remedied by making the heparin MP core degradable, so that sequestered 

proteins would eventually be released from the polymeric matrix into the cellular 

environment. Initiation of the heparin MP core degradation would ideally occur after 

shell degradation, so that proteins could be isolated from the cellular microenvironment 

on a timeline controlled solely by the degradation rate of the PEG shell. The heparin-PEG 
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MPs described in Chapter 6 show potential for this application, as higher heparin content 

MPs (30 and 40% heparin MPs) degrade on a longer timescale (17-19 days) than the 

PEG-based shell (6-7 days) and do not show high protein release during the initial 7 days 

of release after loading (<10% release). In addition, the environmentally triggered 

approaches described in the previous paragraph could also be used for the heparin core. 

Enzymatically triggered degradation could be particularly useful if the shell was able to 

exclude enzymes prior to its degradation. Finally, while a technique for this does not 

necessarily exist yet, if the degradation products of the PEG shell initiated degradation of 

the heparin core, the entire system could be responsive to cellular microenvironment, 

eliminating the requirement for preset degradation timelines. Overall, a degradable 

heparin core could aid in more uniform and effective release of sequestered protein in 

core-shell MPs. 

Finally, it could be very interesting to include heparin materials within the co-

culture platform discussed in Chapter 3. First, this could be done toward the goal of 

modulating cellular signaling. For example, in a co-culture system aiming to analyze 

cellular communication between osteoblasts and chondrocytes, integrating heparin into 

the chondrocyte hydrogel block may better mimic the ECM’s natural ability to sequester 

and concentrate growth factors derived from other cell types. This could further our 

understanding of how GAGs are implicated in cellular signaling in a variety of other 

processes, such as maintenance of articular cartilage [108,375] or tumor development and 

maintenance [174]. In addition, integration of heparin into the co-culture platform could 

permit sequestration and subsequent retrieval of cell-secreted protein for analysis. In the 

study present in Chapter 3, this would be particularly beneficial, as secreted proteins 
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could provide another interesting variable to further strengthen multivariate models, and 

provide additional information upon which to build hypotheses and future experiments. 

As these hydrogels are PEG-based, a small amount of heparin could be integrated into 

enzymatically degradable gels, allowing degradation of gels and release of sequestered 

protein. Thus, integration of heparin into the co-culture system presented could aid in 

modulating protein-mediated cellular communication as well as permitting retrieval of 

cell-secreted proteins for further analysis. 

These future possibilities only further highlight the power of the tunable 

biomaterial-based technologies presented in this work to modulate and study cellular 

processes. A variety of cell systems can be studied upon the co-culture platform 

presented, and some of the modifications presented would enable a deeper understanding 

of dynamic cell communication and behavior. In addition, heparin-based materials can be 

further engineered to actively engage with the cellular microenvironment, providing 

researchers even tighter control over and understanding of evolving cell processes like 

differentiation. Thus, this work lays a foundation for future technology development to 

interrogate and regulate dynamic cell behavior.  
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APPENDIX A 

SURFEN INTERACTIONS WITH SOLUBLE HEPARIN AND 

HEPARIN MPS 

A1. Introduction 

 Surfen (bis-2-methyl-4-amino-quinolyl-6- carbamide) is a small molecule that is 

known to bind heparin and other GAGs [355]. While the nature of the surfen-heparin 

interaction is not fully understood, recent work has uncovered that the dimeric 

aminoquinoline moiety is required for surfen to block heparin-protein interactions, 

indicating that the amine groups of surfen likely interact with positively charged sulfate 

groups to neutralize heparin [376].  Recently, surfen has been used to neutralize the 

affinity of heparin for growth factors. For example, surfen prevented heparin from 

activating antithromin and inhibited FGF-2 signaling in CHO cells, likely due to 

interactions with cell-surface heparin sulfate [355]. Furthermore, delivery of surfen 

resulted in ectopic cartilage formation in long bones, similar to results seen in mice 

deficient for a heparin sulfate-synthesizing enzyme, suggesting that surfen prevents 

heparin sulfate from functioning normally [187]. In addition, surfen was able to replace 

BMP-2 on heparin-functionalized agarose beads [187], suggesting it has a higher affinity 

to heparin than growth factors. Thus, we were interesting in using surfen to block heparin 

MPs, with the intent of neutralizing their protein-binding ability in order to act as a 

control in cell studies. 

A2. Materials and Methods 

A2.1 Materials 
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 Surfen (Sigma-Alrich) was resuspended at 30 mM in dimethyl sulfoxide (DMSO) 

in a glass vial, as surfen binds to plastic [355], and stored at -20°C. Heparin MPs and 

AF633-tagged heparin MPs were prepared as described in Section 5.2.2. Histone was 

functionalized with FITC by reacting 4 mg/mL protein with 0.1 mg/mL FITC in DMSO 

and 150 M ammonium chloride in a bicarbonate buffer solution (pH 8.3) for 8 hours at 

4°C.  The product was then dialyzed and stored at -20°C.  

A2.2 Incubating Heparin Materials with Surfen 

 Prior to incubations, all tubes were blocked using a 0.1% BSA solution for at least 

an hour. MPs and soluble heparin were added to a PBS solution and then surfen was 

added and quickly vortexed. A 10 µM surfen concentration was used for all incubations. 

All incubations were carried out at 37°C on a shaker plate.  

A2.3 Surfen-Blocked Heparin MP Imaging and SDS-PAGE Studies 

 For surfen imaging studies, 10 µM surfen was added to AF633 heparin MPs at a 

35 µg/mL concentration overnight at 37°C on a shaker plate. MPs were centrifuged and 

supernatant was removed, and MPs were washed once. 100 µg FITC-Histone/mg MP 

was then added in PBS and incubated overnight at 4°C on a rotary. MPs were then 

encapsulated in a PEG-DA hydrogel for imaging, as described (Section 5.2.3).  

 For surfen sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) studies, 10 µM surfen was added to heparin MPs at a 35 µg/mL concentration 

overnight at 37°C on a shaker plate. 2.4 µg BMP-2/mg heparin MPs was then added in a 

0.1% BSA PBS solution and incubated overnight at 4°C on a rotary. MPs were then 
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rinsed once, loaded onto an agarose gel (0.21 mg MPs, corresponding to about 500 ng 

protein, in each well), and run against a protein ladder. 

A3. Results and Discussion 

A3.1 Surfen Dosage and Incubation Time 

 Previously, it has been observed that soluble heparin interacts with surfen in a 

dose-dependent manner [355]. Similar to previous results, we found that soluble heparin 

also interacts with surfen and plateaus around 10 µg/mL (Figure A.1A). In addition, we 

show that heparin MPs also interact with surfen in a dose-dependent manner (Figure 

A.1B), with a plateau around 100 µg/mL heparin MPs. Converting these numbers into 

molar ratios, soluble heparin and heparin MPs appeared saturated at 18:1 or 1.8:1 moles 

surfen to moles heparin ratio, respectively. The increase in molar ratio suggests that less 

surfen is required to fully block heparin MPs as compared to soluble heparin, which may 

indicate that there are fewer available surfen binding sites on heparin MPs as compared to 

soluble heparin. This could be due to the conformation or functionalization of heparin in 

MPs, discussed further below, and might also suggest that heparin MPs were unable to be 

fully blocked. To overcome this obstacle, we attempted to incubate surfen and MPs in a 

DMSO solution, but even lower fluorescent intensities were observed (data not shown), 

suggesting that it was energetically favorable for surfen to remain in solution rather than 

binding to heparin MPs. Overall, successfully blocking of heparin MPs with surfen 

proved challenging and should be further explored in the future. For example, dissolving 

surfen in a different organic solvent may enhance binding efficiency, or heparin-PEG 

MPs may have an increased mesh size that permits more surfen binding. If optimized, 
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surfen blocked heparin MPs could be an excellent tool for experimental control groups in 

subsequent studies. 

 Soluble heparin and MPs were incubated for up to 18 or 22 days, respectively. It 

was observed that surfen-soluble heparin interactions began to diminish around day 12 

(Figure A.1A), possibly due to increasing amounts of surfen becoming stuck to the 

plastic tube or heparin degradation. In contrast, surfen remained bound to heparin MPs 

for at least 22 days (Figure A.1B), indicating that heparin MPs were better able to protect 

surfen from loss to the plastic tube or that heparin MPs were less likely to degrade. 

Overall, the stability of the surfen-heparin MP interaction indicates that surfen-blocked 

heparin MPs could be used for long experiments.  

 

Figure A.1. Fluorescence intensity increases with mass of heparin in solution until a 

plateau is reached, indicating that surfen is able to bind to (A) heparin MPs and (B) 

soluble heparin until saturated.  

A3.2 Protein Binding for Surfen-Blocked Heparin MPs 

 As evidenced by confocal microscopy, histone, a heparin-binding protein, was 

able to bind surfen-blocked heparin MPs (Figure A.2). From visual inspection, it did not 

appear that there was any decrease in the ability of surfen-blocked heparin MPs to bind 

histone as compared to unblocked MPs. Histone was found to appear rounded, possibly 
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because a rounded conformation was thermodynamically stable for the flexible histone 

protein, or possibly due to artifacts of imaging, as heparin MPs appear to have dark spots 

that do not emit a fluorescence signal. As these MPs are made with 70% AF633 heparin 

MAm, it is possible that the material is not distributed evenly throughout the MP during 

fabrication.  Heparin MPs blocked with surfen appeared to have similar dark spots (data 

not shown). 

 

Figure A.2. Confocal microscopy images of surfen-blocked heparin MPs. Heparin MPs 

either blocked with surfen and incubated with histone, unblocked and incubated with 

histone, or unblocked without protein, as indicated by key below. Surfen does not prevent 

heparin MPs (red) from binding histone (green) (scale bar = 10µm). 

 To confirm the results obtained from confocal microscopy, surfen-blocked 

heparin MPs were incubated with BMP-2 and then run on a polyacrylamide gel. 

Previously, it has been observed that proteins bound to MPs will dissociate from the MPs 

when incubated with the surfactant SDS and subsequently run on the gel while the MPs 

remain stuck in the well, due to large size [377,378]. In this study, we hypothesized that 

surfen-blocked heparin MPs would not allow for BMP-2 binding, thus no BMP-2 band 

would be present on the gel for this group. In contrast to what we expected, we observed 

that even after being blocked by surfen, heparin MPs were able to bind BMP-2, 

evidenced by the BMP-2 band present in the surfen-blocked MP lane (Figure A.3). As the 
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intensity of the band is similar to the unblocked MP control, we concluded that surfen is 

unable to prevent heparin MP protein interactions.  

 

Figure A.3. Surfen-blocked heparin MPs run on SDS-PAGE. For both surfen-blocked 

and unblocked heparin MPs, BMP-2 was observed to run on the gel (dark band at 16 

kDa, corresponding to the MW of BMP-2). For surfen containing samples, surfen can be 

seen as a bright bar below 10 kDa (surfen MW = 372.42 g/mol). 

 As mentioned above, it is possible that heparin MPs are not blocked as efficiently 

by surfen as soluble heparin, evidenced by the decrease in surfen required to reach the 

apparent max binding for surfen MPs (Figure A.1). Assuming that soluble heparin is 

100% blocked by surfen upon reaching the plateau region, only 10% of the surfen-

binding spots are taken on heparin MPs, which could lead to the protein binding we 

observed. More so, it has been observed that slight increases to the linker region between 

the two aminoquinoline dimers in surfen-like molecules enhances its effectiveness, up to 

a certain limit at which point the molecule becomes too hydrophobic [376]. This suggests 

a structure relationship between surfen and heparin, which might be interrupted when 

heparin is 1) functionalized and 2) cross-linked into MPs, thus reducing the effectiveness 

of surfen. Finally, previous work has not been able to confirm that surfen’s mechanism of 
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action is solely to interact with heparin. While it is known to bind heparin avidly, it is 

also known to interact with other proteins and molecules [376], indicating that observed 

results may have been not only from surfen-heparin interactions, but potentially 

interactions with surfen and other proteins. We have observed that protein incubated with 

surfen is no longer detectable using ELISA, further suggesting that surfen effects protein. 

If surfen does affect protein, this would complicate the use of surfen-blocked heparin 

MPs as control groups. Thus, significantly more work would have to be done to 

efficiently block heparin MPs with surfen in order to use surfen-blocked heparin MPs as 

an experimental control group.  

A4. Surfen Assay to Measure Heparin Concentration in Aqueous Solution 

 Although surfen did not function as we had hoped for our experiments, it was 

possible to use surfen to assay masses of soluble heparin in aqueous solution down to the 

µg level. Following is the protocol: 

Surfen Assay Protocol 

Surfen is a small molecule that binds to GAGs. It emits a weak fluorescent signal that 

increases when bound to GAGs, which is proportional to the amount of GAG bounds in 

the 0-10 µg/mL range.  Surfen is not very soluble in water, and must be prepared in 

DMSO prior to addition to aqueous solution. Surfen concentration in aqueous solution 

should not exceed 10 µM. Because surfen binds avidly to plastic, glass or BSA-blocked 

tubes should be used for assay.  

Supplies: 

 Heparin 

 BSA 

 Surfen  

 DMSO 

 PBS 

Material Prep: 

 Surfen: dilute fresh surfen to a 30 mM concentration in DMSO in the glass vial it 

arrives in. Store at -20°C 

 Tubes: Block tubes for at least 1 hour with 1% BSA in PBS. Removes solution prior 

to adding samples, no need to wash.  

Assay: 
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1. Make heparin standard in PBS: make 1 mg/mL stock soln, 100x dilution for 10 

ug/mL working solution 

ug/mL 10 

ug/mL 

PBS 

0 0 1000 

1 100 900 

2 200 800 

4 400 600 

6 600 400 

8 800 200 

10 1000 0 

2. Prepare samples 

3. Add surfen to each sample to achieve a final concentration of 10 uM surfen (ex: 0.33 

uL surfen in 1 mL). Vortex immediately after adding. 

4. Incubate for at least 3 hours at 37°C 

5. Pipet 100 uL of each sample into a 96 well plate 

6. Read at 320/460 fluorescence 

A5. Conclusion 

 Surfen has previously been used to neutralize heparin-protein binding [187,355], 

likely due to electrostatic interactions between heparin’s negatively charged sulfate 

groups and the amine groups on surfen’s aminoquinoline groups [376]. For this reason, 

we were interested in using surfen-blocked heparin MPs as a control group in our 

spheroid and transwell studies (Chapter 4), as surfen blocked MPs would have the same 

mechanical properties as unblocked MPs but would not be able to bind protein. We show 

that surfen is able to saturate heparin at a 18:1 or 1.8:1 molar ratio for soluble heparin and 

heparin MPs, and that these interactions last for 12 to at least 22 days, respectively. 

Through two different studies, we show that surfen-blocked heparin MPs cannot prevent 

heparin-protein binding. This is likely due to an inefficient blocking protocol but may 

also be due to conformational changes in heparin when it is cross-linked into MPs. While 

unable to be used for blocking heparin MP-protein interactions, we were able to use 

surfen to assay masses of soluble heparin in aqueous solution down to the µg/mL level. 
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Overall, current strategies do no effectively block heparin MPs with surfen, and further 

investigation would need to be carried out to render this technique viable. 
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APPENDIX B 

THE EFFECT OF HEPARIN CELL COATINGS ON ATDC5 

SPHEROID DIFFERENTIATION 

B1. Introduction 

 In the body, heparan sulfate (HS) is attached to membrane-bound (syndecans, 

glypicans, betaglycans) or ECM associated (perlecan, agrin, collagen XVIII) core 

proteins to form HS proteoglycans [174,175]. On the cell membrane, HS acts to facilitate 

ligand-receptor binding, and in the ECM, HS participates in the development of 

morphogen gradients and is thought to protect growth factors from degradation 

[174,175,177,178]. Thus, the function of HS differs based on its spatial location relative 

to the cell surface: HS can either localize protein near the cell surface and initiating 

signaling, or sequester it far from the cell surface and preventing signaling [174]. In this 

work, we asked if heparin localization relative to the cell surface would influence cell 

differentiation. We hypothesized that heparin cell coatings would enhance differentiation 

by concentrating growth factors near the cell surface, while heparin MPs would inhibit 

differentiation by sequestering growth factors away from the cell surface. As shown and 

discussed in Chapter 5, heparin MPs do delay differentiation in ATDC5 cells. Here, we 

show a similar study conducted with heparin cell coatings. 

 Recently, cell coatings have been investigated as a means to control the cellular 

microenvironment [379–381]. In general, they have potential applications in conferring 

biological function, masking cell-surface antigens to improve cell transplantation, 

promoting interactions between two cell populations with coatings that interact with each 
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other, and controlling stem cell lineage commitment [379]. Of all applications, the 

coating of islet cells to mask surface antigens and thus reduce the blood-mediated 

inflammatory reaction after transplantation has been the most widely investigated 

[380,382–385]. Given its activity as an anticoagulant in the coagulation cascade, coating 

islets with heparin has gained interest as a means to reduce coagulation and the 

inflammatory reaction [383,385]. Furthermore, researchers have shown that heparin 

coatings applied by covalent reactions on the cell-surface have not negatively impacted 

islet function [383,385], and have shown that heparin coatings can attract heparin-binding 

proteins like VEGF [384]. Our lab has shown that heparin coatings on MSCs do not 

reduce cell viability or reduce innate immunomodulatory properties, and additionally can 

interact with growth factors to modulate cell differentiation and proliferation [195,386]. 

Thus, in this study we used heparin cell coatings to better understand how heparin 

presented at the cell surface would affect ATDC5 chondrocytic differentiation.  

B2. Materials and Methods 

For soluble heparin studies, AF633 tagged heparin was mixed with single cells at 

a 5 mg/mL concentration prior to forming spheroids as described in Section 4.2.3. For 

heparin cell coating studies, heparin was biotinylated using EDC/HOBt chemistry as 

previously described [386,387]. Heparin cell coatings were applied by a layer-by-layer 

technique according to previous methods [386]. Cells were incubated in 4 mM EZ-Link 

Sulfo-NHS-LC-Biotin (Pierce) in PBS, then 0.5 mg/mL avidin (Invitrogen) in PBS, and 

finally 5 mg/mL biotin-conjugated heparin in PBS for 30 minutes each at 37°C [383]. 

Spheroids were formed with heparin coated cells as described. Cell viability was assessed 

with LIVE/DEAD staining via confocal microscopy. Stacks with slices every 2 μm were 
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flattened using the Z-project function on Image-J. Incorporation of heparin into the cell 

spheroid was assessed with confocal imaging of the AF633 heparin, and images from the 

center of the stack are presented. H&E and Safranin-O staining as well as qPCR were 

conducted and analyzed as described in Section 4.2.5.  

B3. Results and Discussion 

B3.1 Characterization of Heparin Coated ATDC5 Spheroids 

 Heparin can be incorporated into cell spheroids in several different ways. First, as 

shown in Chapter 4, heparin MPs can be incorporated into cell spheroids, which results in 

highly concentrated pockets of heparin throughout the cell matrix. To obtain a more 

homogenous distribution of heparin throughout the ECM, and to allow interactions at the 

cell surface, we investigated two techniques. First, we used a heparin cell coating method 

[386] to coat cells prior to spheroid formation. Second, we mixed soluble heparin with 

single cells during spheroid formation. For both techniques, we used fluorescently tagged 

heparin to visualize incorporation of 5 mg/mL heparin over the course of 14 days (Figure 

B.1). While both groups showed bright signal for heparin at day 1, we observed a rapid 

decrease in fluorescent intensity by day 7 in the soluble heparin group, while the signal 

persisted in the heparin coating group through day 14, though at diminished intensity 

(Figure B.1). These results indicate that soluble heparin either diffuses out of the cell 

spheroid or is degraded by heparanases over the culture period, and that covalently 

attaching heparin to the cell surface allows maintenance of heparin in the matrix over 

time. Thus, for future studies, we used heparin cell coatings to investigate the 

presentation of heparin at the cell surface.  
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Figure B.1. Heparin (blue) was either incorporated into ATDC5 cell spheroids as a 

coating (top) or as soluble, unfunctionalized heparin (bottom).  In coated groups, signal 

persisted through day 14, while in soluble groups, signal faded rapidly.  

 While previous results have indicated that MSCs show no decrease in viability 

when coated with heparin [386], we wanted to ensure that ATDC5 cells also remain 

viable after being coated with heparin. We found that heparin coated cell spheroids 

appeared viable after seven days of culture (Figure B.2). Thus, it is possible to use 

heparin cell coating techniques to investigate the influence of heparin located near the 

cell surface on cell differentiation.  

 

Figure B.2. Heparin coatings did not negatively impact ATDC5 cell spheroid viability 

after 7 days. Images courtesy of Jen Lei.  
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B3.2 Chondrocytic Differentiation of Heparin Coated ATDC5 Spheroids 

 To investigate the ability of heparin cell coatings to modulate chondrocytic 

differentiation, we cultured heparin coated cell spheroids for 18 days on rotary culture. 

We saw no differences in viability between the heparin coating group and the cell only 

group at day 18 (data not shown). H&E staining of spheroid sections showed no 

observable differences between the heparin coating group and the cell only control, and 

both groups increased in size over time and developed the thick border that we have 

found to be characteristic of ATDC5 cell spheroids (Figure B.3). Interestingly, in 

previous work from our lab, a rounded cell morphology was observed in heparin coated 

MSC aggregates, possibly because the coating influences cell packing within the 

aggregate [195]. The absence of this morphology in ATDC5 spheroids may be due to the 

rapid proliferation or matrix deposition of this cell line compared to MSCs. 

 

Figure B.3. H&E staining of ATDC5 spheroids with coating (left) and no coating (right) 

indicates no major morphological differences between groups over 18 days of culture.   
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 To evaluate the influence of the heparin coating on differentiation, spheroids were 

stained with Safranin-O to assess GAG deposition. As they are composed of GAGs, 

heparin cell coatings could potentially be visible after staining, but were not be detected 

in day 1 staining (Figure B.4). This indicates that the heparin coating was at a 

concentration below the detection limit of the stain. At day 6, a transient increase in GAG 

deposition staining was observed in some of the heparin coated spheroid groups, unlike 

the cell only controls. However, by days 12 and 18, GAG deposition appeared similar in 

both groups and possibly increased in the cell only group as compared to the heparin cell 

coating group. Overall, it appeared the GAG deposition was not strongly affected by 

heparin cell coatings. 

 

Figure B.4. Safranin-O staining of ATDC5 spheroids with coating (left) and no coating 

(right) indicates similar staining in all groups over time. 
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 Gene expression was assessed for differentiation markers collagen II, aggrecan, 

and collagen X. Overall, it was observed that gene expression was similar between the 

two groups over the course of the experiments, with slight decreases in aggrecan at day 6 

and collagen X at day 18 in the heparin cell coating group (Figure B.5). This combined 

with the GAG staining indicate that the heparin cell coating might induce a transient 

effect in ATDC5 cell differentiation, but generally did not affect differentiation.  

 

Figure B.5. Gene expression for ATDC5 spheroids with heparin coating (white) and cell 

only (black) for collagen II, aggrecan, and collagen X (*= significantly different than  

indicated group, p<0.05). 

 The lack of differences between the heparin coating and cell only groups may be 

explained by several different reasons. First, ATDC5 cells are known to proliferate 

rapidly, as evidenced by the increasing size of spheroids over the experimental time 
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course (Figure B.3), which would result in cells with reduced levels of the coating after 

cell division. In addition, ATDC5 cells lay down considerable amounts of GAG over 

time (Figure B.4), which would likely overpower the heparin cell coating except at very 

early timepoints. In the future, increasing the concentration of heparin coated to the cell 

surface could be investigated to initiate a stronger response.  

 In previous work, it has been observed that growth factor delivery to heparin-

coated aggregates can modulate cell behavior. For example, we have seen that heparin 

coated MSC aggregates showed enhanced proliferation in the presence of FGF-2 [195]. 

Also, chondrocytic MSC differentiation was enhanced in TGFβ-1 containing media in 

heparin and desulfated heparin groups as compared to the cell only control [195]. Thus, 

both of these studies indicate that while heparin cell coatings alone do not affect 

differentiation, they may be able to manipulate heparin-binding growth factors in a way 

that modulates cell behavior. Overall, while these studies indicate that heparin cell 

coatings did not affect ATDC5 cells, future studies to investigate the effect of heparin 

presentation on growth factor delivery could be conducted with these coatings. 

B4. Conclusion 

 These studies indicate that it is possible to coat ATDC5 cells with a heparin cell 

coating and maintain cell viability, and that the coating will remain in the spheroid for at 

least fourteen days. No changes in differentiation were observed in the heparin cell 

coating group, possibly because ATDC5 cells proliferate rapidly and deposit large 

amounts of endogenous GAG. Overall, future studies might investigate increasing the 

concentration of the heparin cell coating or use of the coating to modulate exogenous 

growth factors presentation to ATDC5 cells.   
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APPENDIX C 

SPATIAL CONTROL OVER HEPARIN MPS IN ATDC5 

SPHEROIDS 

C1. Introduction 

 The field of tissue engineering strives to better mimic the structural complexity of 

native tissue in order to better mimic its function. A variety of approaches have been 

implemented to achieve these goals, including “top-down” and “bottom-up” engineering 

approaches. Top-down approaches include seeding cells into a pre-formed scaffold, in 

hopes that with the guidance of the scaffold’s properties, the cells will rearrange and 

generate a tissue similar to one found in the body [388,389]. While useful at times, top-

down approaches are limited by the requirement for a starting scaffold, which can reduce 

the number of cell-cell contacts and can provide potentially undesirable signals to the 

cells [390].  In bottom-up approaches, small tissue building blocks, or modules, are 

pieced together to make a larger tissue [388]. Modules can consist of materials laden with 

cells, cell sheets, or dense cell aggregates, called spheroids [388]. Spheroids are of 

particular interest, as these scaffold-free modules have abundant opportunity for cell-cell 

and cell-ECM contacts [388]. Still, spatially controlled differentiation within the spheroid 

can be difficult to achieve [250,263].  

 Recently, several studies have presented methods to achieve spatial patterning of 

cells and materials within cell spheroids. One study showed that microfluidic techniques 

could be used to generate “janus” spheroids, or spheroids with different cell types in each 

hemisphere [391]. Another study showed the ability to use magnetic particles to spatially 

orient and locate spheroids [250]. Finally, it was also shown that when BMP-4 loaded 
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microparticles were incorporated into only one hemisphere of an embryoid body, 

differentiation markers were confined to the cells in that hemisphere [263]. These studies 

indicate the potential to spatially modulate differentiation in cell aggregates, which would 

allow for further specification in modules used to build larger tissues.  

 As in one example mentioned above, integration of materials within cell 

aggregates has emerged as a method to direct cell differentiation 

[220,232,233,250,253,259,263]. This approach allows for homogenous delivery of 

biomolecules throughout the cell aggregate, which is not always possible when 

biomolecules are delivered to the external media due to diffusion limitations [263,315]. 

Thus, in these studies, we were interested in spatially modulating differentiation within 

the ATDC5 spheroids by localizing heparin MPs within one hemisphere of the spheroid. 

As described in Chapter 5, heparin MPs have been observed to delay or prevent 

differentiation when cultured throughout ATDC5 spheroids, indicating that they 

potentially could spatially modulate differentiation if localized into one hemisphere.  

 Thus, in this work, we developed spheroids with spatially localized MPs using a 

method involving pelleting of cells in agarose wells, similar to a method used in previous 

studies [263,389]. This method is advantageous, as it does not require the specialized 

equipment necessary for techniques such as microfluidics and photolithography [390]. By 

creating spheroids of cells that differentiate at different rates, it may be possible to 

develop gradients in differentiation, as observed in tissues like the growth plate [23]. 

These tissue modules could then be used as model systems to better understand tissue 

function, or eventually be translated into tissue replacements for a variety of applications.  

C2. Materials and Methods 

 AF633 Heparin MPs were prepared as described in Section 5.2.2. ATDC5 were 

expanded in monolayer and cultured in spheroid culture as described Section 4.2.3, with 
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the following differences. Monolayer ATDC5 cells were stained with Cell Tracker 

Orange or Green (Invitrogen) according to the manufacturer’s protocol, then lifted and 

pelleted in agarose wells to form 350 cell spheroids. One group of the green cells also 

contained AF633 tagged heparin MPs at a 6:1 MP:cell ratio. After 24 hours, orange 

spheroid groups were popped out of agarose wells using a wide bore pipette and added to 

the green MP containing and green cell only groups at a 2:1 orange spheroid:green 

spheroid ratio.  Spheroids were incubated for an additional 24 hours to allow merging and 

then popped out and cultured in mineralization media on rotary culture.   

C3. Results and Discussion 

 Several methods were attempted in order to make spatially organized spheroids. 

For one set of studies, 350 cell spheroids were formed for 6 hours and cell in suspension 

were added on top of spheroids. This method did not result in spatial separation of the 

two layers, likely due to mixing of cell in spheroids that were not fully formed. Thus, a 

24 hour incubation to fully form spheroids was chosen. In addition, the ratios of 

spheroids on top and on bottom were varied and included 2:1, 1:1 and 1:2 ratios. A 2:1 

ratio of spheroids on top compared to those on bottom resulted in the most efficient 

formation of spatially organized spheroids (only 2:1 data shown).  

 Immediately after formation, spatially organized spheroids showed separation of 

the two distinct cell populations: green stained cells with heparin MPs throughout the 

matrix and red/orange stained cells with no MPs (Figure C.1, Day 1). These results were 

encouraging, as they indicated that heparin MPs could be spatially confined to one 

hemisphere in cell spheroids. However, after six days in culture, cell populations and 
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MPs had mixed, resulting in spheroids with cells and MPs evenly spread throughout the 

matrix (Figure C.1, Day 6). As the goal for this work was to evaluate the possibility of 

spatially controlling differentiation, these results indicated that the ATDC5 cell line is not 

the optimal cell type for these studies.  

 

Figure C.1. Spatially organized cell spheroids at day 1 and day 6. Heparin MPs are shown 

in blue, cell population 1in red, and cell population 2 in green. 

 The ATDC5 cell line is a cancer cell line, which allows ATDC5 cells to grow 

quickly. They also deposit substantial amounts of ECM molecules such as GAG and 

collagen II [304,305,308–313], which likely results in cell re-arrangement. This indicates 

that spatial organization may not be possible in ATDC5 cell spheroids due to 

characteristics specific to its cell type. Thus, the application of this technique to other cell 

types that do not proliferate as quickly or lay down as much matrix may be a possible 

means to gain spatial control over cellular differentiation.   
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C4. Conclusion 

 A technique to spatially control cells within spheroids was developed by 

combining two populations of pre-formed spheroids. This technique resulted in spatial 

separation in ATDC5 cell spheroids at early timepoints and confinement of heparin MPs 

to one hemisphere of the spheroids. However, spatial separation was lost after six days in 

culture, likely due to the high rate of ATDC5 cell proliferation and matrix deposition. 

Overall, this technique allows for at least initial spatial separation and may be more 

applicable in other cell types with lower proliferative capacity.  
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APPENDIX D 

HEPARIN MPS TO MODULATE OSTEOGENIC 

DIFFERENTIATION IN MC3T3 CELLS 

D1. Introduction 

 Craniosynostosis involves the premature ossification of one or more cranial vault 

sutures [207,208]. Surgical intervention is currently the only treatment choice, and 

involves surgical removal of calvarial bones, which are then reshaped and reattached. 

Unfortunately, even after surgery, resynostosis can still occur due to abnormally high 

osteogenic potential [207]. Antibodies and other protein inhibitors against osteogenic 

proteins such as BMPs and TGFβs have been applied after surgery in animal models to 

prevent resynostosis, but have had only partial success [209,210,334], likely due to the 

short half-life of these molecules in vivo. Thus, we were interested in utilizing heparin 

MPs as a means to sequester osteogenic growth factors to prevent resynostosis. As a 

proof-of-principle study, the ability of heparin MPs to modulate the differentiation of 

MC3T3-E1 cells, a newborn mouse calvarial-osteoblast cell line known to undergo 

osteoblastic differentiation, was evaluated [392,393].  

D.2 Materials and Methods 

D.2.1 MC3T3 Cell Culture  

 MC3T3 cells were expanded in maintenance media (αMEM, 2 mM L-glutamine, 

500 IU Penicillin, 500 µg/mL Streptomycin, and 10% FBS (Atlanta Biologics)) and 

experiments were conducted in differentiation media (maintenance media plus 10 mM 
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sodium β-glycerophosphate pentahydrate (Alfa Aesar) and 50 µg/ml L-ascorbic acid -2-

phosphate sequimmagnesium salt hydrate (Sigma-Aldrich)). Cells were plated at 5000 

cells/cm
2
 in a 12-well plate and cultured in maintenance media until they reached 

confluence (3 days). Cells were then switched to differentiation media and treatment 

groups were added. Heparin MPs were added at 3.28 mg/transwell. Cells were fed every 

two days.  

D.2.2 qPCR and Gene Expression Analysis 

  Analysis of gene expression was carried out using qPCR and normalized to the 

house-keeping gene RSP-18, as described in Section 4.2.4. Sequences for RUNX2 and 

Collagen I are listed below: 

Table D.1 National Library of Medicine accession number and primer sequences for 

target genes in qPCR 

Target Gene NML Accession # Sequence 

RUNX2 NM_009820 
F-CTCACAAACAACCACAGAACCAC 

R-TGCAGCCTTAAATGACTCGGTTG 

Collagen I NM_007742.4 
F- CTCCCAGAACATCACCTATCACT 

R-GGGAGGTCTTGGTGGTTTTGTATTC 

 

D.2.3 ALP Activity and DNA Content 

 Cell lysis was carried out in a similar fashion to the process described in Section 

4.2.4 except that cells were incubated in 0.1% Triton-X100. ALP activity was assessed as 

described in Section 5.2.5 and DNA content as described in Section 4.2.4. 

D.2.4 Statistical Analysis 

 Statistical analysis was carried out as described in Section 4.2.7.  
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D.3 Results and Discussion 

 In order to determine if heparin MPs could potentially be used as a therapeutic 

materials for craniosynostosis, osteoblastic MC3T3 cells were cultured for fourteen days 

in transwell with heparin MPs. Gene expression for osteoblastic markers Collagen I and 

RUNX2 were assessed and no differences in gene expression were observed at days 7 or 

14 (Figure D.1). ALP expression was assessed and then normalized to DNA content at 

days 7 and 14, and was found to be increased in heparin MP groups compared to cell 

controls (Figure D.1). Overall, these results indicate that heparin MPs have little effect on 

MC3T3 cells, and as ALP activity is increased in heparin MP groups, it is possible that 

differentiation is actually accelerated in the presence of heparin MPs. Additional outcome 

measures, such as assessment of matrix mineralization and analyses at later time points, 

could provide more insight into how heparin MPs modulate MC3T3 cell differentiation. 

It is likely that heparin MPs affect different cell types in different ways, depending upon 

the growth factors present in the cellular microenvironment. Further analyses would need 

to be conducted to determine which proteins were bound by heparin MPs in MC3T3 cell 

culture as compared to ATDC5 cell culture, which could help elucidate reasons for 

differences observed. In addition, previous studies have indicated that the ability of 

heparan sulfate to enhance healing in a critical sized rat femur defect was dose dependent 

[197], suggesting that additional dosing studies may be required to achieve desired 

results. Overall, these results indicate that more studies need to be conducted to 

understand how heparin MPs can modulate other differentiation processes in vitro.  
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Figure D.1 Osteoblastic MC3T3 cells were cultured with or without heparin MPs in 

transwell for fourteen days and assessed for osteoblastic markers collagen I and RUNX2. 

ALP activity was measured and normalized to DNA content (*=significantly different 

than indicated group, p<0.05). 
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APPENDIX E 

SUPPLMENTARY FIGURES 

E.1 Supplementary Figures for Chapter 3 

 All methods, results, and discussion for these figures are included in Chapter 3. 

 

Figure E.1. Principal Component Analysis (PCA) was conducted to determine if 

difference in gene expression resulted in clustering of culture configuration or glucose 

levels prior to further assigning of classes for PLS-DA. (A) PCA for the entire adipocyte 

gene expression data set yielded two principal components that discriminated adipocytes 

by culture configuration (R
2
X = 0.84, Q

2
 = 0.74). (B) PCA score and loading plots for 

AAA (R
2
X = 0.74, Q

2
 = 0.45), AMA (R

2
X = 0.65, Q

2
 = 0.25), and OMA (R

2
X = 0.74, Q

2
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= 0.56) cultures yielded one PC. Observed clustering by glucose level warranted further 

investigated with PLS-DA for AAA. (C) PLS-DA weight plot for AAA model in Figure 

3.2C.  

 

Figure E.2. Images were captured using confocal microscopy of calcein (green, live) and 

ethidium bromide (red, dead) staining in each experimental condition. Merged 
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representative images are presented here. Representative images of adipocytes (A), 

osteoblasts (B), and MSCs (C) on days 1 and 7 at normal and high glucose conditions in 

each culture configuration. 

 

Figure E.3. PCA was conducted within culture configuration datasets to determine if 

difference in gene expression resulted in clustering glucose levels prior to further 

assigning of classes for PLS-DA. (A) PCA score and loading plots for OOO (R
2
X = 0.71, 

Q
2
 = 0.52), OMO (R

2
X = 0.72, Q

2
 = 0.51), and OMA (R

2
X = 0.72, Q

2
 = 0.41) cultures 

yielded one PC. Observed clustering by glucose level warranted further investigated with 

PLS-DA for OOO and OMA configuration for classes assigned according to glucose 

level. (B) PLS-DA weight plot for OOO and OMA models in Figure 3.4C. 
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Figure E.4. PCA was conducted to determine if difference in gene expression resulted in 

clustering of culture configuration or glucose levels prior to further assigning of classes 

for PLS-DA. PCA for the entire MSC gene expression data set yielded two principal 

components and clustering by culture configuration (R
2
X = 0.66, Q

2
 = 0.36). 
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Figure E.5 PCA was conducted within culture configuration datasets to determine if 

difference in gene expression resulted in clustering glucose levels prior to further 

assigning of classes for PLS-DA. PCA score and loading plots for MMM (R
2
X = 0.66, Q

2
 

= -0.1), OMO (R
2
X = 0.73, Q

2
 = 0.43), AMA (R

2
X = 0.65, Q

2
 = 0.42), and OMA (R

2
X = 

0.68, Q
2
 = 0.02) cultures yielded one PC.  
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Figure E.6. Observed clustering by glucose level warranted further investigated with 

PLS-DA for OMO and AMA culture configurations with classes assigned according to 

glucose level. PLS-DA score and weight plot for OMO (R
2
Y = 0.82, Q

2
 = 0.73) and AMA 

(R
2
Y = 0.62, Q

2
 = 0.41). 

E.2 Gene Expression Profiles for ATDC5 Cells in Monolayer  and Spheroid Culture 

E.2.1 Materials and Methods 

 ATDC5 cells were cultured in monolayer in 12 well plates for 22 days or in 

spheroids for 18 days in mineralization media. Further details can be found in Section 

4.2.3. Analysis of gene expression was carried out using qPCR and normalized to the 

house-keeping gene RSP-18, as described in Section 4.2.4. Sequences for aggrecan, 

collagen II, and collagen X can be found in Section 4.2.4, and the sequence for Ihh is 

listed below: 
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Table E.1 National Library of Medicine accession number and primer sequences for 

target genes in qPCR in ATDC5 monolayer study 
Target Gene NML Accession # Sequence 

Ihh NM_010544 
F- CCCCGAACCTTCATCTTGGT 

R- GCCCCGAGAAACATTGGAGT 

Statistical analysis is described in Section 4.2.7.  

E.2.2 Results and Discussion 

 In monolayer culture, low levels of gene expression for all genes were observed at 

day 1, with increases at day 6 and a maximum expression level at day 12. For Ihh and 

aggrecan, decreases were observed by day 18, and for collagen II and X, by day 22 

(Figure E.7). Overall, this upregulation between days 6-12 and gradual decrease of gene 

expression markers at longer times in culture is similar to what has been observed in past 

experiments [309]. 

 
Figure E7. Gene expression of collagen II, aggrecan, Ihh, and collagen X for ATDC5 

cells in monolayer culture for 22 days. Each gene is normalized to the RSP-18 
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housekeeping gene at each timepoint (a similar letter = not significantly different, 

p<0.05).  

 In spheroid culture, low levels of gene expression for all genes were observed at 

day 1, with increases at day 6 for collagen II, aggrecan, and Ihh, and increases at day 12 

for collagen X. A maximum expression level for collagen II was observed at day 12, 

while aggrecan, Ihh, and collagen X continued increasing throughout the course of 

culture (Figure E.8). Overall, ATDC5 gene expression in spheroid culture was slightly 

delayed as compared to gene expression in monolayer culture, and is similar to what has 

been observed in ATDC5 aggregate culture in previous experiments [305]. 

 

Figure E8. Gene expression of coll II, aggrecan, Ihh, and collagen X for ATDC5 cells in 

spheroid culture for 18 days. Each gene is normalized to the RSP-18 housekeeping gene 

at each timepoint (a similar letter = not significantly different, p<0.05). 

E.3 Additional Bioactivity Data for Pre-Loaded Core-Shell MPs 

E.3.1 Materials and Methods 

 Microparticles were prepared and sterilized as described in Sections 5.2.4 and 

5.2.5. MPs were incubated for 1.5 days prior to being added to cells for pre-degradation. 
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This allowed MP shell degradation to occur during the three day cell assay (while 

degradation occurs throughout the entire time course, the majority of the PEG-based MP 

degradation occurred between days 3-6 for these MPs; Figure 5.1C). All core-shell and 

heparin MP groups had 0.02 mg of heparin and the degradable PEG-based control group 

had the same number of MPs as the core-shell group. Cells were cultured for 3 days and 

then media/MPs were removed. C2C12 cell culture and ALP assay was conducted as 

described in Section 5.2.5.  

E.3.2 Results and Discussion 

 Degradable core-shell and core shell microparticles induced a lower C2C12 ALP 

activity than the soluble control (27.6+14.6% and 12.9+1.6% of soluble control, 

respectively; Figure E9). No signal was observed for groups without BMP-2, and an 

elevated DNA content was observed in all groups subjected to BMP-2 as compared to 

those without BMP-2. No trends in DNA content were observed between groups. 

 

Figure E9. Degradable (Deg) core-shell MPs modulate loaded heparin MP delivery to 

cells. Normalized ALP activity for deg core-shell, core-shell, and soluble BMP-2 groups 

(non-loaded groups showed no signal; *=significantly different from soluble group, 

p<0.05, n=4). 
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 Taken together with results presented in Chapter 5, these results suggest that 

degradable core-shell MPs have the potential to temporally modulate protein presentation 

to cells. While two days of pre-degradation did not result in sufficient degradation to 

initiate a cell response (suggesting that many heparin MPs were still encapsulated in PEG 

shells) (Figure E9), three days of pre-degradation was sufficient to initiate a cell response 

(suggesting that many heparin MPs had been released from PEG shells) (Figure 5.5). In 

the future, assays that can capture immediate changes in cell behavior in response to 

protein presentation could better highlight the potential of these MPs to temporally 

modulate protein presentation. 

E.4 Soluble Heparin Release from Non-Degradable 100% Heparin MAm MPs 

E.4.1 Materials and Methods 

 Heparin MAm MPs were formed and sterilized as described in Section 4.2.2. 

Heparin MPs were incubated in a PBS solution at a 0.2 mg/mL concentration at 37°C on 

a shaker plate. Supernatant was removed and saved for analysis at days 7, 14, and 21. 

Supernatant was replaced with fresh PBS at each timepoint. The surfen assay (described 

in Section A.4) was used to determine the total mass of soluble heparin released into the 

supernatant at each timepoint.  

E.4.2 Results and Discussion 

 Over the course of 21 days, heparin MPs lost less than 3% of their total mass to 

heparin shedding. This indicates that for the non-degradable 100% heparin MPs used in 

this work, very little heparin was released throughout the experiments conducted. In cell 
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studies, daily media changes would have likely removed most of the released heparin, 

possibly before it could interact with cells. Thus, it is unlikely that soluble heparin 

released from 100% heparin MPs was a major contributor to resulting cell phenotype.  

 

Figure E10. Percentage of total heparin in MPs shed over the course of 21 days. Less than 

3% of total heparin in the heparin MPs was shed over the timecourse. 
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APPENDIX F 

ADDITIONAL INFORMATION 

F.1. Assumptions for Protein Release Requirements for Heparin-PEG MPs 

 The assumptions listed here describe why 20 µg of protein was used as a lower 

cut-off to determine if subsequent assays should be conducted on protein released from 

heparin-PEG MPs: 

1. ELISA assays have the lowest detection limits of the assays considered (pg/mL as 

compared to ng/mL for western blots and ng-µg/mL for mass spectrometry). 

2. Based on the number of ATDC5 cells plated in these experiments, the doubling 

time of these cells, and previous reports of protein secreted on a per cell and time 

basis, an estimated 10 ng of protein could be released by ATDC5 cells in a 24 

hour period [311–313].  

3. Based on the concentration of FBS in the media used for these experiments and 

previous reports about concentration of protein in FBS [327], about 5000 µg 

protein from FBS would be in each cell culture well.  

4. Assuming that about 40% of the protein in serum is heparin-binding (based on 

break-down of serum components and which of those are known to bind heparin 

[175,180,326,327,330,332]), about 2000 µg of serum proteins could be bound by 

heparin MPs. 
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5. Estimating that 10 ng of protein is secreted by cells and all of this protein can bind 

to heparin MPs, then 0.0005% of the protein bound to heparin MPs would be cell-

secreted vs. from the serum: 

𝟎. 𝟎𝟏 µ𝒈 𝒄𝒆𝒍𝒍 𝒔𝒆𝒄𝒓𝒆𝒕𝒆𝒅 𝒑𝒓𝒐𝒕𝒆𝒊𝒏𝒔

𝟐𝟎𝟎𝟎 µ𝒈 𝒔𝒆𝒓𝒖𝒎 𝒑𝒓𝒐𝒕𝒆𝒊𝒏𝒔
= 𝟎. 𝟎𝟎𝟎𝟎𝟎𝟓, 𝒐𝒓 𝟎. 𝟎𝟎𝟎𝟓% 

6. To enter a range detectable by ELISA (~100 pg/mL) an absolute minimum of 20 

µg of total protein is required: 

𝟎. 𝟎𝟎𝟎𝟎𝟎𝟓(𝒙 𝒄𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏) = 𝟏𝟎𝟎
𝒑𝒈

𝒎𝑳
, 𝒙 = 𝟐𝟎 

µ𝒈

𝒎𝑳
 

7.  This estimate is the best-case scenario estimate for detection by ELISA. 100-

1000s of µg would be required for western blots or mass spectrometry.  

F.2 Methods for Relamination Study (Figure 7.1) 

 PEG-diacrylate (PEG-DA, Mn = 8kDa), and PEG-RGD (Mn = 3.4kDa) were 

synthesized as described in Section 3.2.2. The collagenase-sensitive glue was synthesized 

by reacting peptides (GGGLGPAGGK) with acrl-PEG-succinimidyl valerate (Acrl-PEG-

SVA; Mn ~3.4 kDa) as described in Section 3.2.2. Tri-laminates were prepared from 

PEG-DA and PEG-RGD (cell-seeded gels only) solutions with 50 x 10
6
 cells/mL human 

MSCs, passage 3. Using serial photolithography, a collagenase-sensitive glue was 

patterned between two cell-laden PEG-DA layers. After 1 day, laminates were degraded 

(collagenase, 1100 U/mL), immediately soaked in fresh media for 1 hour, and re-

laminated with collagenase-sensitive glue. Cell viability at 1 day after initial fabrication 
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and 3 days after re-lamination (n=3) was observed using LIVE/DEAD stain. Viability 

was quantified using ImageJ and stats were run as described Sections 3.2.4 and 3.2.8. 
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